Вопрос задан 17.01.2025 в 22:10. Предмет Физика. Спрашивает Ivanova Karina.

Пассажирский лифт начинает движение из состояния покоя и,двигаясь равноускоренно вниз. за время 5.0с проходит путь S при таком движении лифта вес пассажира массой ? кг равен 660 Н. ускорение свободного падение равно 10 м/с^2. Определить путь.Напишите решение!

Перейти к ответам

Ответы на вопрос

Отвечает Вайс Элла.

Для решения задачи о движении пассажирского лифта, нам нужно использовать формулы кинематики и некоторые физические законы.

Дано:

  1. Масса пассажира mm – чтобы найти массу, используем вес:

    P=mgP = m \cdot g

    где P=660НP = 660 \, \text{Н} (вес пассажира) и g=10м/с2g = 10 \, \text{м/с}^2 (ускорение свободного падения).

  2. Ускорение свободного падения g=10м/с2g = 10 \, \text{м/с}^2.

  3. Время t=5.0сt = 5.0 \, \text{с}.

Шаг 1: Находим массу пассажира

Из уравнения веса:

m=Pg=660Н10м/с2=66кгm = \frac{P}{g} = \frac{660 \, \text{Н}}{10 \, \text{м/с}^2} = 66 \, \text{кг}

Шаг 2: Определяем ускорение лифта

Лифт начинает движение равноускоренно вниз, и его ускорение можно найти из второго закона Ньютона. Силы, действующие на пассажира:

  • Сила тяжести Fg=mg=66кг10м/с2=660НF_g = m \cdot g = 66 \, \text{кг} \cdot 10 \, \text{м/с}^2 = 660 \, \text{Н}.
  • Сила, действующая на пассажира в лифте FLF_L равна весу, который он ощущает в лифте.

Так как лифт движется вниз, мы можем записать уравнение:

Fnet=FgFL=maF_{\text{net}} = F_g - F_L = m \cdot a

Где FLF_L – это сила, действующая на пассажира, которую мы можем обозначить как PmaP - m \cdot a.

Рассмотрим, что FLF_L в этом случае будет меньше, чем FgF_g, так как лифт ускоряется вниз. Поскольку FLF_L является весом, который пассажир ощущает в лифте, и нам нужно выразить aa (ускорение лифта). Мы знаем, что вес, который он ощущает в лифте, меньше, чем его реальный вес:

P=PmaP' = P - m \cdot a

Где PP' - это вес, который пассажир ощущает в лифте. Но мы можем использовать тот факт, что P=mgmaP' = m \cdot g - m \cdot a для подстановки:

660Н=660Н66кгa660 \, \text{Н} = 660 \, \text{Н} - 66 \, \text{кг} \cdot a

Из этого уравнения получаем:

0=66aa=gPm=1066066=1010=00 = -66 \cdot a \quad \Rightarrow \quad a = g - \frac{P'}{m} = 10 - \frac{660}{66} = 10 - 10 = 0

Таким образом, для лифта, который движется вниз с ускорением aa, у нас будет:

Fnet=m(ga)=mgFLF_{\text{net}} = m \cdot (g - a) = m \cdot g - F_L

Шаг 3: Находим путь

Используя уравнение движения для равноускоренного движения:

S=v0t+12at2S = v_0 t + \frac{1}{2} a t^2

где v0v_0 – начальная скорость, равная 0 (лифт начинает с состояния покоя), а a=ga = g (в данном случае ускорение лифта будет равно ускорению свободного падения):

S=0+1210(5)2S = 0 + \frac{1}{2} \cdot 10 \cdot (5)^2 S=121025=125мS = \frac{1}{2} \cdot 10 \cdot 25 = 125 \, \text{м}

Ответ

Лифт за 5 секунд проходит путь S=125мS = 125 \, \text{м}.

Похожие вопросы

Топ вопросов за вчера в категории Физика

Последние заданные вопросы в категории Физика

Задать вопрос