Вопрос задан 23.01.2025 в 07:41. Предмет Физика. Спрашивает Кашников Данила.

При прямолинейном движении зависимость координаты тела х от времени t имеет вид : x=5+2t+4t(2)
Чему равна скорость тела в момент времени t=2 c при таком движении?

Перейти к ответам

Ответы на вопрос

Отвечает Кузьмина Наталья.

Для того чтобы найти скорость тела в момент времени t=2t = 2 с, нужно воспользоваться производной функции координаты x(t)x(t) по времени tt, так как скорость является производной от координаты по времени.

Задано уравнение:

x=5+2t+4t2x = 5 + 2t + 4t^2
  1. Найдем производную от x(t)x(t) по tt, чтобы получить выражение для скорости v(t)v(t):

    В данном случае производная от суммы равна сумме производных, поэтому:

    v(t)=dxdt=ddt(5+2t+4t2)v(t) = \frac{dx}{dt} = \frac{d}{dt}(5 + 2t + 4t^2)
  2. Вычислим производные каждого слагаемого по tt:

    • Производная от постоянного числа 55 равна 00.
    • Производная от 2t2t равна 22.
    • Производная от 4t24t^2 равна 4×2t=8t4 \times 2t = 8t (используем правило дифференцирования степенной функции).

    Итак, выражение для скорости:

    v(t)=0+2+8t=2+8tv(t) = 0 + 2 + 8t = 2 + 8t
  3. Подставим значение t=2t = 2 с в полученное выражение для скорости:

    v(2)=2+8×2=2+16=18v(2) = 2 + 8 \times 2 = 2 + 16 = 18

Таким образом, скорость тела в момент времени t=2t = 2 с равна 1818 м/с.

Похожие вопросы

Топ вопросов за вчера в категории Физика

Последние заданные вопросы в категории Физика

Задать вопрос