Вопрос задан 08.12.2025 в 18:40. Предмет Математика. Спрашивает Монгулов Найыр.

Найди площадь прямоугольника двумя разными способами. Равны ли полученные выражения? Какое свойство арифметических действий получилось?

Перейти к ответам

Ответы на вопрос

Отвечает Хрыкин Витя.

Представим прямоугольник, у которого одна сторона равна a+ba+b, другая — cc.

Способ 1 (целиком).
Площадь всего прямоугольника:

S1=(a+b)c.S_1=(a+b)\cdot c.

Способ 2 (разбивка).
Разрежем прямоугольник на два, проведя границу там, где длины aa и bb «складываются» по первой стороне. Тогда площади частей:

Sa=ac,Sb=bc.S_{a}=a\cdot c,\qquad S_{b}=b\cdot c.

Площадь исходного прямоугольника равна сумме площадей частей:

S2=ac+bc.S_2=a\cdot c+b\cdot c.

Сравним выражения:

(a+b)c=ac+bc.(a+b)\cdot c=a\cdot c+b\cdot c.

Да, они равны. Получилось распределительное свойство умножения относительно сложения (дистрибутивность).

Похожие вопросы

Топ вопросов за вчера в категории Математика

Математика 06.02.2024 12:19 229 Данилина Елизавета

Последние заданные вопросы в категории Математика

Задать вопрос