Вопрос задан 06.04.2025 в 08:01. Предмет Информатика. Спрашивает Тихонов Денис.

В велокроссе участвуют 119 спортсменов. Специальное устройство регистрирует прохождение каждым из участников промежуточного финиша, записывая его номер с использованием минимально возможного количества битов, одинакового для каждого спортсмена. Каков информационный объем сообщения, записанного устройством, после того как промежуточный финиш прошли 70 велосипедистов?
1) 70 бит 2) 70 байт 3) 490 бит 4) 119 байт

Перейти к ответам

Ответы на вопрос

Отвечает Селезнева Екатерина.

Давайте разберемся с задачей пошагово:

1. Определение количества битов для кодирования номера одного спортсмена:

Для того чтобы устройство могло записать номер каждого участника, требуется определить минимальное количество битов, достаточное для кодирования чисел от 1 до 119. Это количество определяется формулой:

nlog2(M),n \geq \log_2(M),

где MM — количество уникальных номеров (в данном случае 119).

log2(119)6.9,\log_2(119) \approx 6.9,

следовательно, округляем вверх: для кодирования номера каждого спортсмена нужно 7 бит.

2. Информационный объем для 70 спортсменов:

Если каждый номер занимает 7 бит, то для записи 70 номеров потребуется:

7×70=490 бит.7 \times 70 = 490 \text{ бит}.

3. Анализ вариантов ответа:

  • 70 бит — неверно, так как это предполагает, что на каждого спортсмена тратится только 1 бит.
  • 70 байт — неверно, так как объем в байтах (1 байт = 8 бит) составил бы 560 бит, а не 490 бит.
  • 490 бит — верно, так как это соответствует расчету.
  • 119 байт — неверно, так как это вообще не имеет отношения к задаче.

Правильный ответ:

3) 490 бит.

Похожие вопросы

Топ вопросов за вчера в категории Информатика

Последние заданные вопросы в категории Информатика

Задать вопрос