Вопрос задан 26.06.2025 в 16:24. Предмет Математика. Спрашивает Колесникова Ангелина.

Найдите корень уравнение (6x-13)в квадрате=(6x-11)в квадрате

Перейти к ответам

Ответы на вопрос

Отвечает Поліщук Віка.

Для решения уравнения (6x13)2=(6x11)2(6x - 13)^2 = (6x - 11)^2, начнем с того, что можно извлечь квадратный корень из обеих сторон уравнения. Но для этого сначала упростим уравнение.

  1. Раскроем обе стороны уравнения:

    (6x13)2=(6x11)2(6x - 13)^2 = (6x - 11)^2

    Значит, у нас есть два выражения, которые равны друг другу. Мы можем воспользоваться свойством, что если квадраты двух выражений равны, то сами эти выражения могут быть либо равны, либо противоположны. То есть:

    6x13=6x11или6x13=(6x11)6x - 13 = 6x - 11 \quad \text{или} \quad 6x - 13 = -(6x - 11)
  2. Решим первое уравнение:

    6x13=6x116x - 13 = 6x - 11

    Если мы вычтем 6x6x из обеих сторон, получим:

    13=11-13 = -11

    Это не возможно, так как -13 не равно -11. Значит, первое уравнение не имеет решений.

  3. Решим второе уравнение:

    6x13=(6x11)6x - 13 = -(6x - 11)

    Раскроем скобки:

    6x13=6x+116x - 13 = -6x + 11

    Переносим все элементы с xx на одну сторону, а числа — на другую:

    6x+6x=11+136x + 6x = 11 + 13

    Получаем:

    12x=2412x = 24

    Теперь делим обе стороны на 12:

    x=2x = 2

Таким образом, корень уравнения x=2x = 2.

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Математика 08.09.2025 07:58 5 Белоусов Андрей
Задать вопрос