Вопрос задан 08.10.2024 в 15:30. Предмет Математика. Спрашивает Куракулов Никита.

Для детских садов купили 120 мячей и 150 скакалок Какое наибольшие количество садов можно одарить одинаковыми подарками

Перейти к ответам

Ответы на вопрос

Отвечает Лосева Анастасия.

Чтобы определить наибольшее количество детских садов, которые можно одарить одинаковыми подарками, нужно найти наибольший общий делитель (НОД) для количества мячей (120) и скакалок (150).

НОД — это наибольшее число, на которое можно разделить оба числа без остатка. В данном случае, НОД покажет, какое наибольшее количество садов можно равномерно распределить мячики и скакалки, чтобы в каждом саду было одинаковое количество этих предметов.

Шаги для нахождения НОД:

  1. Разложим числа на простые множители:

    • 120 разложим на множители: 120=23×3×5120 = 2^3 \times 3 \times 5.
    • 150 разложим на множители: 150=2×3×52150 = 2 \times 3 \times 5^2.
  2. Определим общие множители: Общие множители у 120 и 150 — это 2, 3 и 5.

  3. Найдем произведение общих множителей:

    • Общий множитель: 2×3×5=302 \times 3 \times 5 = 30.

Таким образом, НОД для 120 и 150 равен 30.

Ответ:

Наибольшее количество детских садов, которые можно одарить одинаковыми подарками, составляет 30. В этом случае каждому детскому саду достанется по 4 мяча (120 ÷ 30 = 4) и 5 скакалок (150 ÷ 30 = 5).

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос