Вопрос задан 24.12.2025 в 07:36. Предмет Математика. Спрашивает Миронов Вадим.

Представить многочлен в виде степени а^3-3a^2+3a-1

Перейти к ответам

Ответы на вопрос

Отвечает Баранов Евгений.

Многочлен a33a2+3a1a^3 - 3a^2 + 3a - 1 можно представить как разложение куба бинома. Рассмотрим его подробнее.

Этот многочлен можно представить в виде:

a33a2+3a1=(a1)3a^3 - 3a^2 + 3a - 1 = (a - 1)^3

Пояснение: если разложить (a1)3(a - 1)^3, то мы получим:

(a1)3=(a1)(a1)(a1)(a - 1)^3 = (a - 1)(a - 1)(a - 1)

Раскроем скобки поэтапно:

  1. (a1)(a1)=a22a+1(a - 1)(a - 1) = a^2 - 2a + 1

  2. Теперь умножим (a22a+1)(a^2 - 2a + 1) на (a1)(a - 1):

(a22a+1)(a1)=a3a22a2+2a+a1=a33a2+3a1(a^2 - 2a + 1)(a - 1) = a^3 - a^2 - 2a^2 + 2a + a - 1 = a^3 - 3a^2 + 3a - 1

Таким образом, мы приходим к исходному многочлену a33a2+3a1a^3 - 3a^2 + 3a - 1, что подтверждает, что разложение (a1)3(a - 1)^3 является верным.

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Математика 10.12.2025 11:47 25 Васильева Александра
Математика 10.12.2025 10:49 11 Хамидуллин Нурислам
Задать вопрос