
Вопрос задан 11.03.2025 в 16:44.
Предмет Математика.
Спрашивает Гараклова Яна.
Ребра тетраэдра равны 1. Найдите площадь сечения, проходящего через середины четырех его ребер
Ответы на вопрос

Отвечает Хорошильцева Поля.
Для решения этой задачи нужно понять, какое сечение тетраэдра получается при соединении середины четырёх его рёбер. Мы знаем, что у тетраэдра четыре вершины и шесть рёбер. Если сечение проходит через середины четырёх рёбер, то они образуют плоский четырёхугольник. Рассмотрим это подробно.
Шаг 1. Определение сечения
Тетраэдр с рёбрами длины 1. Рассмотрим середины следующих рёбер:
- — середина ребра ,
- — середина ребра ,
- — середина ребра ,
- — середина ребра .
Соединяя точки , , , , мы получаем четырёхугольник. Этот четырёхугольник лежит в плоскости, пересекающей тетраэдр.
Шаг 2. Выбор системы координат
Для удобства поместим вершины тетраэдра в трёхмерной декартовой системе координат:
- ,
- ,
- ,
- .
Теперь вычислим координаты середины каждого из рёбер:
- ,
- ,
- ,
- .
Шаг 3. Нахождение векторов сторон четырёхугольника
Четырёхугольник имеет стороны:
- ,
- ,
- ,
Похожие вопросы









Топ вопросов за вчера в категории Математика







Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili