Вопрос задан 12.01.2024 в 07:48. Предмет Математика. Спрашивает Kogut Vova.

На кружок по робототехнике ходят ученики б, 7,8 и 9 классов (их возраст 12, 13, 14 и 15 лет соответственно). Известно, что шестиклассников меньше чем семиклассников, а семиклассников меньше чем восьмиклассников, При девятиклассников и кружке столько же, сколько семи и восьмиклассников вместе взятых, а количества шести и семимиклассников нечётны. На сдном из занятий кружка руководитель судивлением обнаружил, что средний возраст ребят - целое число лет. Сколько учащихся посещают занятия кружка, если их меньше 30? ДАЮ 40 БАЛЛОВ!!! СРОЧНО!

Перейти к ответам

Ответы на вопрос

Отвечает Карашукеев Тимур.

Давайте разберем эту задачу пошагово.

  1. Условия задачи:

    • Шестиклассников (12 лет) меньше, чем семиклассников (13 лет).
    • Семиклассников меньше, чем восьмиклассников (14 лет).
    • Количество девятиклассников (15 лет) равно количеству семиклассников и восьмиклассников вместе.
    • Количество шестиклассников и семиклассников нечетные.
    • Средний возраст учащихся - целое число.
    • Всего учащихся меньше 30.
  2. Нахождение возможных комбинаций: Пусть xx, yy, zz и ww - количество шестиклассников, семиклассников, восьмиклассников и девятиклассников соответственно. Из условий следует:

    • x<y<zx < y < z
    • w=y+zw = y + z
    • xx и yy - нечетные
    • Общее количество учеников x+y+z+w<30x + y + z + w < 30
  3. Расчет среднего возраста: Средний возраст учащихся - это сумма возрастов всех учащихся, деленная на их количество. Это должно быть целым числом.

    Формула среднего возраста: Средний возраст=12x+13y+14z+15wx+y+z+w\text{Средний возраст} = \frac{12x + 13y + 14z + 15w}{x + y + z + w}

  4. Поиск решения: Используем циклы для перебора всех возможных комбинаций xx, yy, zz, и ww, удовлетворяющих вышеуказанным условиям. Найдем комбинации, для которых средний возраст учащихся будет целым числом, и общее количество учеников меньше 30.

  5. Проверка результатов: Убедимся, что найденные комбинации соответствуют всем условиям задачи.

Перейдем к расчетам.

Найдена одна комбинация, которая удовлетворяет всем условиям задачи:

  • Шестиклассников (12 лет): 3
  • Семиклассников (13 лет): 5
  • Восьмиклассников (14 лет): 6
  • Девятиклассников (15 лет): 11

Общее количество учащихся, посещающих кружок по робототехнике: 3+5+6+11=253 + 5 + 6 + 11 = 25, что меньше 30.

Таким образом, на кружке по робототехнике занимаются 25 учащихся. ​

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос