Вопрос задан 31.08.2025 в 09:48. Предмет Математика. Спрашивает Руденко Александр.

Решите уравнение 5x в квадрате+8x+3=0

Перейти к ответам

Ответы на вопрос

Отвечает Щербина Василий.

Для того чтобы решить уравнение 5x² + 8x + 3 = 0, нужно воспользоваться формулой решения квадратного уравнения:

x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Здесь aa, bb и cc — коэффициенты уравнения. В нашем случае:

  • a=5a = 5,

  • b=8b = 8,

  • c=3c = 3.

Теперь подставим эти значения в формулу:

x=8±8245325x = \frac{-8 \pm \sqrt{8^2 - 4 \cdot 5 \cdot 3}}{2 \cdot 5} x=8±646010x = \frac{-8 \pm \sqrt{64 - 60}}{10} x=8±410x = \frac{-8 \pm \sqrt{4}}{10} x=8±210x = \frac{-8 \pm 2}{10}

Теперь решим для двух случаев:

  1. Когда знак плюс:

x=8+210=610=0.6x = \frac{-8 + 2}{10} = \frac{-6}{10} = -0.6
  1. Когда знак минус:

x=8210=1010=1x = \frac{-8 - 2}{10} = \frac{-10}{10} = -1

Итак, решения уравнения 5x² + 8x + 3 = 0 — это x=0.6x = -0.6 и x=1x = -1.

Похожие вопросы

Топ вопросов за вчера в категории Математика

Математика 25.01.2025 12:57 136 Кеңесбеков Ғаламат

Последние заданные вопросы в категории Математика

Математика 08.09.2025 07:58 5 Белоусов Андрей
Задать вопрос