Вопрос задан 29.11.2024 в 21:54. Предмет Математика. Спрашивает Лобацкая Арина.

(√37 - 5)(√37 + 5)
решите пожалуйста полностью а не просто ответ

Перейти к ответам

Ответы на вопрос

Отвечает Фролов Петя.

Давайте решим выражение (375)(37+5)(\sqrt{37} - 5)(\sqrt{37} + 5) полностью, шаг за шагом.

Это произведение двух выражений является разностью квадратов, которая имеет общий вид:

(ab)(a+b)=a2b2(a - b)(a + b) = a^2 - b^2

В нашем случае:

  • a=37a = \sqrt{37}
  • b=5b = 5

Теперь применим формулу разности квадратов:

(375)(37+5)=(37)252(\sqrt{37} - 5)(\sqrt{37} + 5) = (\sqrt{37})^2 - 5^2

Вычислим квадраты:

(37)2=37(\sqrt{37})^2 = 37 52=255^2 = 25

Теперь подставим результаты в выражение:

3725=1237 - 25 = 12

Таким образом, результат выражения (375)(37+5)(\sqrt{37} - 5)(\sqrt{37} + 5) равен 1212.

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос