Вопрос задан 19.02.2025 в 14:08. Предмет Физика. Спрашивает Карцев Никита.

Решите пожалуйста , срочно надо

1) Гора образует с горизонтом угол 15 градусов. У подножия горы стоит орудие. Под каким углом к поверхности горы нужно выпустить снаряд, чтобы дальность его полёта вдоль склона была максимальна

2) Шарик массой 10 г всплывает с постоянной скоростью 0,2 м/с в жидкости, плотность которой в 4 раза больше плотности материала шарика. Определите коэффициент сопротивления, считая, что сила сопротивления пропорциональна скорости.

Перейти к ответам

Ответы на вопрос

Отвечает Соколов Ислам.

Задача 1: Угол выпуска снаряда для максимальной дальности на склоне

  1. Условие задачи: У нас есть гора, которая образует с горизонтом угол 15 градусов. Орудие расположено у подножия горы, и нужно определить, под каким углом к поверхности горы нужно выпустить снаряд, чтобы дальность его полета вдоль склона была максимальной.

  2. Решение: Мы будем использовать подход, основываясь на кинематике движения снаряда с учётом наклонной поверхности.

    • Пусть угол наклона горы к горизонту равен α=15\alpha = 15^\circ.
    • Угол выпуска снаряда к горизонту обозначим как θ\theta.
    • Угол выпуска снаряда относительно поверхности горы будет равен θ=θ15\theta' = \theta - 15^\circ.

    Чтобы дальность полета снаряда вдоль склона была максимальной, мы должны учесть, что дальность на наклонной плоскости зависит от угла, под которым снаряд был выпущен.

    Для максимальной дальности вдоль склона угол выпуска снаряда относительно поверхности горы θ\theta' должен быть равен углу наклона горы, то есть:

    θ=α=15\theta' = \alpha = 15^\circ

    Это значит, что угол выпуска снаряда относительно горизонта должен быть:

    θ=α+15=15+15=30.\theta = \alpha + 15^\circ = 15^\circ + 15^\circ = 30^\circ.

    Таким образом, чтобы дальность полета снаряда вдоль склона была максимальной, угол выпуска снаряда относительно горизонта должен быть 30 градусов.


Задача 2: Определение коэффициента сопротивления для шарика

  1. Условие задачи: Шарик массой 10 г всплывает с постоянной скоростью 0,2 м/с в жидкости, плотность которой в 4 раза больше плотности материала шарика. Нужно определить коэффициент сопротивления, при условии, что сила сопротивления пропорциональна скорости.

  2. Решение: Для решения этой задачи используем закон Архимеда и формулу для силы сопротивления в жидкости.

    • Масса шарика m=10г=0,01кгm = 10 \, \text{г} = 0,01 \, \text{кг}.
    • Скорость всплытия v=0,2м/сv = 0,2 \, \text{м/с}.
    • Плотность жидкости ρж=4×ρшарика\rho_{\text{ж}} = 4 \times \rho_{\text{шарика}}, где ρшарика\rho_{\text{шарика}} — плотность материала шарика.
    • Сила сопротивления Fсопр=kvF_{\text{сопр}} = k v, где kk — коэффициент сопротивления, а vv — скорость.

    Для того чтобы шарик всплывал с постоянной скоростью, сила Архимеда должна уравновешивать силу тяжести и силу сопротивления. Таким образом, в равновесии выполняется следующее условие:

    Fсопр=Fарх=Fтяж.F_{\text{сопр}} = F_{\text{арх}} = F_{\text{тяж}}.
    • Сила тяжести Fтяж=mgF_{\text{тяж}} = mg, где g9,81м/с2g \approx 9,81 \, \text{м/с}^2.
    • Сила Архимеда Fарх=VρжgF_{\text{арх}} = V \rho_{\text{ж}} g, где VV — объём шарика.

    Объём шарика можно найти из его массы и плотности:

    V=mρшарика.V = \frac{m}{\rho_{\text{шарика}}}.

    Сила сопротивления, пропорциональная скорости, выражается как:

    Fсопр=kv.F_{\text{сопр}} = k v.

    В равновесии силы равны:

    kv=Vρжg.k v = V \rho_{\text{ж}} g.

    Подставляем выражение для объёма:

    kv=mρшарикаρжg.k v = \frac{m}{\rho_{\text{шарика}}} \cdot \rho_{\text{ж}} g.

    Плотность жидкости в 4 раза больше плотности шарика, то есть ρж=4ρшарика\rho_{\text{ж}} = 4 \cdot \rho_{\text{шарика}}. Подставляем это в уравнение:

    kv=mρшарика4ρшарикаg.k v = \frac{m}{\rho_{\text{шарика}}} \cdot 4 \cdot \rho_{\text{шарика}} g.

    Упростим выражение:

    kv=4mg.k v = 4 m g.

    Теперь подставляем известные значения:

    k0,2=40,019,81.k \cdot 0,2 = 4 \cdot 0,01 \cdot 9,81. k0,2=0,3924.k \cdot 0,2 = 0,3924. k=0,39240,2=1,962Н\cdotpс/м.k = \frac{0,3924}{0,2} = 1,962 \, \text{Н·с/м}.

    Таким образом, коэффициент сопротивления kk равен 1,962 Н·с/м.


Обе задачи решены, и ответы получены!

Похожие вопросы

Топ вопросов за вчера в категории Физика

Последние заданные вопросы в категории Физика

Задать вопрос