Вопрос задан 16.04.2025 в 13:39. Предмет Информатика. Спрашивает Сивова Ксения.

для хранения растрового изображения размером 128х128 пикселей отвели 6 Кбайт памяти. Каково максимально возможное число цветов в палитре изображения?

Перейти к ответам

Ответы на вопрос

Отвечает Черняк Влад.

Для того чтобы ответить на этот вопрос, давайте разберемся с основными моментами, связанными с хранением растровых изображений.

  1. Размер изображения: Изображение имеет размеры 128х128 пикселей, что означает, что оно состоит из 128×128=16384128 \times 128 = 16384 пикселей.

  2. Объем памяти: Известно, что для хранения всего изображения выделено 6 Кбайт памяти. В 1 Кбайт = 1024 байта, значит, 6 Кбайт = 6×1024=61446 \times 1024 = 6144 байта.

  3. Предположим, что каждый пиксель изображения хранит индекс цвета в палитре. В этом случае каждый пиксель будет занимать несколько бит памяти в зависимости от числа цветов в палитре.

  4. Определим количество бит, которое нужно для хранения одного пикселя. Пусть в палитре будет NN цветов. Чтобы хранить индекс цвета одного пикселя, потребуется log2N\lceil \log_2 N \rceil бит (где x\lceil x \rceil — это округление в большую сторону). Например:

    • Для 2 цветов нужно 1 бит (так как log22=1\log_2 2 = 1).
    • Для 4 цветов нужно 2 бита (так как log24=2\log_2 4 = 2).
    • Для 8 цветов нужно 3 бита (так как log28=3\log_2 8 = 3), и так далее.
  5. Объем памяти для хранения изображения: Каждый пиксель использует log2N\lceil \log_2 N \rceil бит. Поскольку в изображении 16384 пикселя, общее количество бит, которое нужно для хранения всех пикселей, будет равно 16384×log2N16384 \times \lceil \log_2 N \rceil.

  6. Связь с объемом памяти: Память в байтах (где 1 байт = 8 бит) будет равна:

    16384×log2N8\frac{16384 \times \lceil \log_2 N \rceil}{8}

    Это количество памяти должно быть равно 6144 байта, то есть:

    16384×log2N8=6144\frac{16384 \times \lceil \log_2 N \rceil}{8} = 6144

    Умножим обе части на 8:

    16384×log2N=4915216384 \times \lceil \log_2 N \rceil = 49152

    Разделим обе части на 16384:

    log2N=4915216384=3\lceil \log_2 N \rceil = \frac{49152}{16384} = 3

    Таким образом, нам нужно 3 бита для хранения одного пикселя, что означает, что палитра может содержать 23=82^3 = 8 цветов.

Итак, максимально возможное количество цветов в палитре изображения — 8.

Похожие вопросы

Топ вопросов за вчера в категории Информатика

Последние заданные вопросы в категории Информатика

Задать вопрос