Вопрос задан 27.09.2025 в 06:38. Предмет Математика. Спрашивает Борисова Даша.

1.Выполните действие: а)(5+x)^2 в)(3а-10b)^2 б)(1-3x)^ г)(x^2+4)^2 2.Представьте трёхчлен в виде квадрата двучлена: а)4+4а+а^2 б)a^2-8ab+16b^2

Перейти к ответам

Ответы на вопрос

Отвечает Ощепков Никита.

  1. Выполнение действий:

а) (5+x)2(5 + x)^2
Для раскрытия квадрата двучлена используем формулу (a+b)2=a2+2ab+b2(a + b)^2 = a^2 + 2ab + b^2.
Здесь a=5a = 5 и b=xb = x, подставляем в формулу:

(5+x)2=52+25x+x2=25+10x+x2(5 + x)^2 = 5^2 + 2 \cdot 5 \cdot x + x^2 = 25 + 10x + x^2

Ответ: 25+10x+x225 + 10x + x^2.

в) (3a10b)2(3a - 10b)^2
Для раскрытия квадрата двучлена используем ту же формулу, где a=3aa = 3a и b=10bb = -10b:

(3a10b)2=(3a)223a10b+(10b)2=9a260ab+100b2(3a - 10b)^2 = (3a)^2 - 2 \cdot 3a \cdot 10b + (-10b)^2 = 9a^2 - 60ab + 100b^2

Ответ: 9a260ab+100b29a^2 - 60ab + 100b^2.

б) (13x)2(1 - 3x)^2
Здесь a=1a = 1 и b=3xb = -3x, подставляем в формулу:

(13x)2=12213x+(3x)2=16x+9x2(1 - 3x)^2 = 1^2 - 2 \cdot 1 \cdot 3x + (-3x)^2 = 1 - 6x + 9x^2

Ответ: 16x+9x21 - 6x + 9x^2.

г) (x2+4)2(x^2 + 4)^2
Здесь a=x2a = x^2 и b=4b = 4, подставляем в формулу:

(x2+4)2=(x2)2+2x24+42=x4+8x2+16(x^2 + 4)^2 = (x^2)^2 + 2 \cdot x^2 \cdot 4 + 4^2 = x^4 + 8x^2 + 16

Ответ: x4+8x2+16x^4 + 8x^2 + 16.

  1. Представление трёхчлена в виде квадрата двучлена:

а) 4+4a+a24 + 4a + a^2
Мы видим, что трёхчлен состоит из трёх частей: 44, 4a4a, и a2a^2. Это подходит к формуле (a+b)2=a2+2ab+b2(a + b)^2 = a^2 + 2ab + b^2, где a=aa = a и b=2b = 2. Подставляем в формулу:

(2+a)2=4+4a+a2(2 + a)^2 = 4 + 4a + a^2

Ответ: 4+4a+a2=(a+2)24 + 4a + a^2 = (a + 2)^2.

б) a28ab+16b2a^2 - 8ab + 16b^2
Здесь трёхчлен можно представить как разность квадратов, так как он имеет вид (a4b)2(a - 4b)^2:

(a4b)2=a22a4b+(4b)2=a28ab+16b2(a - 4b)^2 = a^2 - 2 \cdot a \cdot 4b + (4b)^2 = a^2 - 8ab + 16b^2

Похожие вопросы

Топ вопросов за вчера в категории Математика

Математика 04.09.2025 18:21 44 Коляда Алексей

Последние заданные вопросы в категории Математика

Математика 18.09.2025 06:00 21 Шпакова Алина
Математика 08.09.2025 07:58 7 Белоусов Андрей
Задать вопрос