Вопрос задан 21.12.2025 в 18:26. Предмет Математика. Спрашивает Гатауллина Аня.

1. Приведите примеры натуральных чисел, имеющих делители 3 и 4. Какие делители, кроме указанных, имеют выбранные натуральные числа? 2. Приведите примеры натуральных чисел, не имеющих других простых делителей, кроме 3 и 5.

Перейти к ответам

Ответы на вопрос

Отвечает Троценко Ирина.

  1. Примеры натуральных чисел, имеющих делители 3 и 4:

    1. Число 12 делится на 3 (12 ÷ 3 = 4) и на 4 (12 ÷ 4 = 3).

    1. Число 24 делится на 3 (24 ÷ 3 = 8) и на 4 (24 ÷ 4 = 6).

    1. Число 36 делится на 3 (36 ÷ 3 = 12) и на 4 (36 ÷ 4 = 9).

Кроме делителей 3 и 4, эти числа имеют другие делители:

  • Число 12: делители — 1, 2, 3, 4, 6, 12.

  • Число 24: делители — 1, 2, 3, 4, 6, 8, 12, 24.

  • Число 36: делители — 1, 2, 3, 4, 6, 9, 12, 18, 36.

  1. Примеры натуральных чисел, не имеющих других простых делителей, кроме 3 и 5:

    1. Это произведение простых чисел 3 и 5 (15 = 3 × 5).

    1. Это произведение простых чисел 3 и 5 (45 = 3 × 3 × 5).

    1. Это произведение простых чисел 3 и 5 (75 = 3 × 5 × 5).

    1. Это произведение простых чисел 3 и 5 (225 = 3 × 3 × 5 × 5).

Эти числа не имеют простых делителей, отличных от 3 и 5, так как их разложение на простые числа состоит только из этих двух простых чисел.

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Математика 10.12.2025 11:47 25 Васильева Александра
Математика 10.12.2025 10:49 11 Хамидуллин Нурислам
Задать вопрос