Вопрос задан 08.02.2025 в 19:24. Предмет Математика. Спрашивает Давыдова Камилла.

Необходимо из квадрата со стороной 8 дм получить прямоугольник с шириной 4 дм и такой же площадью. Посчитай длину этого прямоугольника

Перейти к ответам

Ответы на вопрос

Отвечает Демянчук Дарина.

Чтобы решить эту задачу, давайте разберемся поэтапно.

У нас есть квадрат со стороной 8 дм. Площадь квадрата можно найти по формуле для площади квадрата S=a2S = a^2, где aa — это длина стороны квадрата. В нашем случае:

Sквадрата=8×8=64 дм2S_{\text{квадрата}} = 8 \times 8 = 64 \text{ дм}^2

Теперь нам нужно из этого квадрата сделать прямоугольник, площадь которого должна быть равна площади исходного квадрата, то есть 64 дм², а ширина прямоугольника должна быть 4 дм.

Площадь прямоугольника можно выразить через его ширину и длину по формуле:

Sпрямоугольника=ширина×длинаS_{\text{прямоугольника}} = \text{ширина} \times \text{длина}

Площадь прямоугольника равна 64 дм², а ширина прямоугольника — 4 дм. Подставим эти значения в формулу:

64=4×длина64 = 4 \times \text{длина}

Теперь решим это уравнение для длины:

длина=644=16 дм\text{длина} = \frac{64}{4} = 16 \text{ дм}

Итак, длина прямоугольника будет 16 дм.

Таким образом, прямоугольник, который имеет ширину 4 дм и такую же площадь, как и исходный квадрат, должен иметь длину 16 дм.

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос