Вопрос задан 01.02.2025 в 18:31. Предмет Физика. Спрашивает DELETED.

Точка начиная двигаться равноускоренно по окружности радиусом 1м проходит путь 50 м за 10 секунд. Чему равно нормальное ускорение точки через 5 секунд после начала движения?

Перейти к ответам

Ответы на вопрос

Отвечает Смирнова Елизавета.

Для решения этой задачи начнем с анализа условий и пошагового расчета.

Дано:

  • Радиус окружности R=1мR = 1 \, \text{м}.
  • Пройденный путь S=50мS = 50 \, \text{м} за t=10сt = 10 \, \text{с}.

Нам нужно найти нормальное ускорение точки через t=5сt = 5 \, \text{с} после начала движения.

1. Определим тангенциальное ускорение

Так как точка движется равноускоренно, мы можем воспользоваться формулой для пути при равноускоренном движении:

S=att22S = \frac{a_t \cdot t^2}{2}

где ata_t — тангенциальное ускорение, которое мы хотим найти.

Подставим значения и решим уравнение:

50=at102250 = \frac{a_t \cdot 10^2}{2} 50=100at250 = \frac{100 \cdot a_t}{2} at=502100=1м/с2a_t = \frac{50 \cdot 2}{100} = 1 \, \text{м/с}^2

Таким образом, тангенциальное ускорение at=1м/с2a_t = 1 \, \text{м/с}^2.

2. Определим линейную скорость через 5 секунд

Линейная скорость точки через t=5сt = 5 \, \text{с} может быть найдена по формуле:

v=attv = a_t \cdot t

Подставим значения:

v=15=5м/сv = 1 \cdot 5 = 5 \, \text{м/с}

3. Найдём нормальное ускорение

Нормальное ускорение ana_n определяется по формуле:

an=v2Ra_n = \frac{v^2}{R}

Подставим найденные значения v=5м/сv = 5 \, \text{м/с} и R=1мR = 1 \, \text{м}:

an=521=25м/с2a_n = \frac{5^2}{1} = 25 \, \text{м/с}^2

Ответ

Нормальное ускорение точки через 5 секунд после начала движения равно 25м/с225 \, \text{м/с}^2.

Похожие вопросы

Топ вопросов за вчера в категории Физика

Последние заданные вопросы в категории Физика

Задать вопрос