Вопрос задан 08.12.2024 в 20:35. Предмет Алгебра. Спрашивает Петрянин Максим.

Сколькими способами можно распределить между 13 спортсменами три призовых места
срочно!​

Перейти к ответам

Ответы на вопрос

Отвечает Анушевская Света.

Для решения этой задачи нужно понять, что каждое призовое место уникально, а значит, порядок распределения мест важен. Это классическая задача на перестановки.

Мы имеем 13 спортсменов, из которых нужно выбрать трёх для трёх призовых мест: первое, второе и третье. Сперва мы выбираем спортсмена на первое место, затем на второе и, наконец, на третье.

  1. На первое место можно выбрать одного из 13 спортсменов.
  2. После того как первое место занято, на второе место остаётся выбрать одного из 12 оставшихся спортсменов.
  3. Для третьего места остаётся выбрать одного из 11 спортсменов.

Чтобы найти общее количество способов распределения призовых мест, нужно перемножить количество возможных вариантов для каждого места:

13×12×11=171613 \times 12 \times 11 = 1716

Итак, всего существует 1716 способов распределить три призовых места между 13 спортсменами.

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Алгебра 01.04.2025 15:52 156 Циммерман Кристина
Алгебра 22.01.2024 06:04 574 Любомудров Евгений

Последние заданные вопросы в категории Алгебра

Задать вопрос