Вопрос задан 09.11.2024 в 15:00. Предмет Математика. Спрашивает Пожиганова Алёнка.

Хозяйка приобрела два пакетика семян кабачков и замочила их для проращивания в одном блюдце. В первом пакетике было 5 семян сорта «Элит», а во втором 8 семян сорта «Best». Проросли все семена. На грядке оказалось 10 посадочных мест. Хозяйка выбрала случайным образом 10 семян для посадки. Найти вероятность того, что на грядке вырастет равное количество кабачков обоих сортов.

Перейти к ответам

Ответы на вопрос

Отвечает Алексеева Мария.

Задача сводится к нахождению вероятности того, что из случайно выбранных 10 семян для посадки на грядке будет по 5 кабачков каждого сорта — то есть 5 семян сорта «Элит» и 5 семян сорта «Best».

Шаг 1. Общая ситуация.

Имеется всего 13 семян: 5 семян сорта «Элит» и 8 семян сорта «Best». Хозяйка случайным образом выбирает 10 семян для посадки. Нам нужно найти вероятность того, что среди этих 10 семян будет ровно 5 семян сорта «Элит» и 5 семян сорта «Best».

Шаг 2. Комбинаторика.

Чтобы найти вероятность, нужно сначала определить общее количество способов выбрать 10 семян из 13. Это можно сделать с помощью биномиальных коэффициентов (числа сочетаний). Общее количество способов выбрать 10 семян из 13:

C(13,10)=13!10!(1310)!=13!10!3!C(13, 10) = \frac{13!}{10!(13 - 10)!} = \frac{13!}{10!3!}

Шаг 3. Количество благоприятных исходов.

Теперь нам нужно найти количество способов выбрать 5 семян сорта «Элит» из 5 и 5 семян сорта «Best» из 8. Это тоже делается с помощью биномиальных коэффициентов:

  • Количество способов выбрать 5 семян сорта «Элит» из 5:
C(5,5)=5!5!(55)!=1C(5, 5) = \frac{5!}{5!(5 - 5)!} = 1
  • Количество способов выбрать 5 семян сорта «Best» из 8:
C(8,5)=8!5!(85)!=56C(8, 5) = \frac{8!}{5!(8 - 5)!} = 56

Таким образом, общее количество благоприятных исходов (когда выбираются 5 семян сорта «Элит» и 5 семян сорта «Best») равно:

1×56=561 \times 56 = 56

Шаг 4. Вероятность.

Теперь мы можем найти искомую вероятность. Она равна отношению количества благоприятных исходов к общему количеству возможных исходов:

P=56C(13,10)P = \frac{56}{C(13, 10)}

Рассчитаем C(13,10)C(13, 10):

C(13,10)=13!10!3!=13×12×113×2×1=286C(13, 10) = \frac{13!}{10!3!} = \frac{13 \times 12 \times 11}{3 \times 2 \times 1} = 286

Теперь подставляем в формулу:

P=562860.196P = \frac{56}{286} \approx 0.196

Ответ:

Вероятность того, что на грядке вырастет равное количество кабачков обоих сортов (по 5 семян каждого сорта), составляет примерно 0.196 или 19.6%.

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос