Вопрос задан 29.10.2025 в 06:55. Предмет Математика. Спрашивает Рыбина Дарья.

Выполните возведение в квадрат 1) (4х-3)^2 2) (5m-4n)^2 3) (10c+7d)^2 4) (4x-1/8y)^2 5) (0.3a+0.9b)^2

Перейти к ответам

Ответы на вопрос

Отвечает Оганян Михаил.

  1. (4x3)2(4x - 3)^2

Для возведения в квадрат используем формулу: (ab)2=a22ab+b2(a - b)^2 = a^2 - 2ab + b^2.

Здесь a=4xa = 4x и b=3b = 3. Подставим в формулу:

(4x3)2=(4x)22(4x)3+32(4x - 3)^2 = (4x)^2 - 2 \cdot (4x) \cdot 3 + 3^2 =16x224x+9= 16x^2 - 24x + 9
  1. (5m4n)2(5m - 4n)^2

Аналогично, используем формулу (ab)2=a22ab+b2(a - b)^2 = a^2 - 2ab + b^2, где a=5ma = 5m и b=4nb = 4n.

(5m4n)2=(5m)22(5m)(4n)+(4n)2(5m - 4n)^2 = (5m)^2 - 2 \cdot (5m) \cdot (4n) + (4n)^2 =25m240mn+16n2= 25m^2 - 40mn + 16n^2
  1. (10c+7d)2(10c + 7d)^2

Здесь a=10ca = 10c и b=7db = 7d, применяем формулу (a+b)2=a2+2ab+b2(a + b)^2 = a^2 + 2ab + b^2:

(10c+7d)2=(10c)2+2(10c)(7d)+(7d)2(10c + 7d)^2 = (10c)^2 + 2 \cdot (10c) \cdot (7d) + (7d)^2 =100c2+140cd+49d2= 100c^2 + 140cd + 49d^2
  1. (4x18y)2\left(4x - \frac{1}{8}y\right)^2

Для этого примера используем формулу (ab)2=a22ab+b2(a - b)^2 = a^2 - 2ab + b^2, где a=4xa = 4x и b=18yb = \frac{1}{8}y:

(4x18y)2=(4x)22(4x)18y+(18y)2\left(4x - \frac{1}{8}y\right)^2 = (4x)^2 - 2 \cdot (4x) \cdot \frac{1}{8}y + \left(\frac{1}{8}y\right)^2 =16x214xy+164y2= 16x^2 - 1 \cdot 4xy + \frac{1}{64}y^2 =16x24xy+164y2= 16x^2 - 4xy + \frac{1}{64}y^2
  1. (0.3a+0.9b)2(0.3a + 0.9b)^2

Здесь a=0.3aa = 0.3a и b=0.9bb = 0.9b, применяем формулу (a+b)2=a2+2ab+b2(a + b)^2 = a^2 + 2ab + b^2:

(0.3a+0.9b)2=(0.3a)2+2(0.3a)(0.9b)+(0.9b)2(0.3a + 0.9b)^2 = (0.3a)^2 + 2 \cdot (0.3a) \cdot (0.9b) + (0.9b)^2

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос