Вопрос задан 28.02.2025 в 22:42. Предмет Математика. Спрашивает Жукова Рина.

На игральной кости грани 1,2,3 окрашены в красный цвет, а грани 4,5,6 - в черный.При бросании кости выпала черная грань. Какова вероятность того, что на этой грани стоит четное число?

Перейти к ответам

Ответы на вопрос

Отвечает Куприянова Влада.

Для решения задачи воспользуемся понятием условной вероятности.

Условия задачи:

  • Игральная кость имеет шесть граней с числами от 1 до 6.
  • Грани с номерами 1, 2, 3 окрашены в красный цвет, а грани с номерами 4, 5, 6 — в черный.
  • Нам известно, что при броске выпала черная грань. Нужно найти вероятность того, что на этой грани стоит четное число.

Шаг 1: Определим возможные события.

  • Так как нам известно, что выпала черная грань, мы ограничиваем наш выбор только черными гранями, то есть числами 4, 5 и 6.

    Таким образом, возможные исходы для черных граней: 4, 5, 6.

  • Из этих граней только грань с числом 4 и грань с числом 6 — четные числа.

Шаг 2: Найдем вероятность.

Мы ищем вероятность того, что при условии, что выпала черная грань, на этой грани окажется четное число. То есть, это задача на условную вероятность.

  • Количество черных граней — 3 (грани с номерами 4, 5, 6).
  • Количество четных чисел среди черных граней — 2 (грани с номерами 4 и 6).

Таким образом, вероятность того, что на выпавшей черной грани будет четное число, равна отношению числа благоприятных исходов к общему числу исходов среди черных граней:

P(четное число | черная грань)=число благоприятных исходовобщее число исходов=23P(\text{четное число | черная грань}) = \frac{\text{число благоприятных исходов}}{\text{общее число исходов}} = \frac{2}{3}

Ответ: Вероятность того, что на выпавшей черной грани окажется четное число, равна 23\frac{2}{3}.

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос