Вопрос задан 27.01.2025 в 13:25. Предмет Алгебра. Спрашивает Руткевич Анжела.

От станции А в направлении станции В, расстояние между которыми равно 240 км, отправились одновременно два поезда. Первый из них прибыл на станцию В на 1 ч раньше второго. Найдите скорость движения каждого поезда, если второй проходит за 2 ч на 40 км больше, чем первый - за один час.

Перейти к ответам

Ответы на вопрос

Отвечает Мерсер Алан.

Давайте решим задачу, разложив её на понятные шаги.

Обозначим:

  • скорость первого поезда как v1v_1 (км/ч),
  • скорость второго поезда как v2v_2 (км/ч).

Сразу известно:

  1. Расстояние между станциями A и B равно 240 км.
  2. Первый поезд прибыл на станцию B на 1 час раньше второго.
  3. Второй поезд проходит за 2 часа на 40 км больше, чем первый поезд проходит за 1 час.

Шаг 1: Выразим время в пути для каждого поезда

Пусть:

  • время в пути первого поезда равно t1=240v1t_1 = \frac{240}{v_1},
  • время в пути второго поезда равно t2=240v2t_2 = \frac{240}{v_2}.

Так как первый поезд прибыл на 1 час раньше, у нас есть уравнение:

t2=t1+1t_2 = t_1 + 1

или, подставив выражения для времени:

240v2=240v1+1.\frac{240}{v_2} = \frac{240}{v_1} + 1.

Шаг 2: Используем второе условие о пройденных расстояниях

Второй поезд за 2 часа проходит на 40 км больше, чем первый поезд за 1 час. Значит:

2v2=v1+40.2v_2 = v_1 + 40.

Теперь у нас есть система из двух уравнений:

  1. 240v2=240v1+1\frac{240}{v_2} = \frac{240}{v_1} + 1,
  2. 2v2=v1+402v_2 = v_1 + 40.

Шаг 3: Решим систему уравнений

Подставим v1v_1 из второго уравнения во первое уравнение.

Из второго уравнения выразим v1v_1:

v1=2v240.v_1 = 2v_2 - 40.

Теперь подставим это выражение в первое уравнение:

240v2=2402v240+1.\frac{240}{v_2} = \frac{240}{2v_2 - 40} + 1.

Приведём уравнение к удобной форме для решения.

Умножим обе стороны на v2(2v240)v_2(2v_2 - 40), чтобы избавиться от дробей:

240(2v240)=240v2+v2(2v240).240(2v_2 - 40) = 240v_2 + v_2(2v_2 - 40).

Раскроем скобки и упростим:

480v29600=240v2+2v2240v2.480v_2 - 9600 = 240v_2 + 2v_2^2 - 40v_2.

Приведём подобные слагаемые:

0=2v22280v2+9600.0 = 2v_2^2 - 280v_2 + 9600.

Разделим все на 2:

v22140v2+4800=0.v_2^2 - 140v_2 + 4800 = 0.

Решим квадратное уравнение.

Это квадратное уравнение относительно v2v_2. Найдём его корни по формуле:

v2=140±140241480021.v_2 = \frac{140 \pm \sqrt{140^2 - 4 \cdot 1 \cdot 4800}}{2 \cdot 1}.

Посчитаем дискриминант:

140244800=1960019200=400.140^2 - 4 \cdot 4800 = 19600 - 19200 = 400.

Корни уравнения:

v2=140±202.v_2 = \frac{140 \pm 20}{2}.

Получаем два решения:

  1. v2=140+202=80v_2 = \frac{140 + 20}{2} = 80 км/ч,
  2. v2=140202=60v_2 = \frac{140 - 20}{2} = 60

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Алгебра 07.07.2025 12:56 21 Модин Федя

Последние заданные вопросы в категории Алгебра

Алгебра 07.07.2025 12:56 21 Модин Федя
Алгебра 07.07.2025 11:57 16 Горбаченко Артём
Алгебра 07.07.2025 10:55 24 Просалов Кирилл
Алгебра 07.07.2025 09:56 14 Александрова Анастасия
Алгебра 07.07.2025 08:52 10 Сенавьев Никита
Алгебра 07.07.2025 07:54 23 Рашитова Влада
Алгебра 07.07.2025 06:52 23 Гринь Тёма
Алгебра 07.07.2025 05:58 13 Потанцев Роман
Алгебра 07.07.2025 04:51 22 Луганский Максим
Алгебра 06.07.2025 20:57 3 Мирная Лера
Задать вопрос