Вопрос задан 17.04.2025 в 14:05. Предмет Математика. Спрашивает Зиро Константин.

Для компота купили фрукты . Из них яблоки составляют 7 частей,груши - 4 части , абрикосы - 3 части . Груш на 1,7 кг меньше , чем яблок . Сколько килограммов купили для компота

Перейти к ответам

Ответы на вопрос

Отвечает Грабова Таня.

Для того чтобы решить задачу, давайте разберемся с пропорциями и условиями.

  1. Обозначим количество каждого вида фруктов:

    • Пусть xx — общая масса всех фруктов, которые купили для компота.
    • Количество яблок составляют 7 частей от общей массы.
    • Количество груш — 4 части от общей массы.
    • Количество абрикосов — 3 части от общей массы.

    Итак, общая масса xx фруктов делится на 3 части:

    • яблоки составляют 714\frac{7}{14} общей массы, то есть 7 частей из 14;
    • груши составляют 414\frac{4}{14} общей массы, то есть 4 части из 14;
    • абрикосы составляют 314\frac{3}{14} общей массы, то есть 3 части из 14.
  2. Переведем части в килограммы: Масса яблок =714x= \frac{7}{14} \cdot x, масса груш =414x= \frac{4}{14} \cdot x, масса абрикосов =314x= \frac{3}{14} \cdot x.

    По условию задачи, груши на 1,7 кг легче яблок. То есть, разница между массой груш и массой яблок составляет 1,7 кг. Запишем это как уравнение:

    414x=714x1.7\frac{4}{14} \cdot x = \frac{7}{14} \cdot x - 1.7
  3. Решаем уравнение: Упростим уравнение:

    414x=714x1.7\frac{4}{14} \cdot x = \frac{7}{14} \cdot x - 1.7

    Переносим все выражения с xx на одну сторону:

    714x414x=1.7\frac{7}{14} \cdot x - \frac{4}{14} \cdot x = 1.7 314x=1.7\frac{3}{14} \cdot x = 1.7

    Умножаем обе части уравнения на 14, чтобы избавиться от дробей:

    3x=1.7143 \cdot x = 1.7 \cdot 14 3x=23.83 \cdot x = 23.8

    Разделим обе части уравнения на 3:

    x=23.83=7.93x = \frac{23.8}{3} = 7.93

    Таким образом, общая масса фруктов для компота составляет 7,93 кг.

  4. Проверим ответ:

    • Масса яблок: 7147.93=3.965\frac{7}{14} \cdot 7.93 = 3.965 кг.
    • Масса груш: 4147.93=2.26\frac{4}{14} \cdot 7.93 = 2.26 кг.
    • Масса абрикосов: 3147.93=1.7\frac{3}{14} \cdot 7.93 = 1.7 кг.

    Действительно, разница между массой яблок и груш составляет 3.9652.26=1.73.965 - 2.26 = 1.7 кг, как указано в условии задачи.

Ответ: для компота купили 7,93 кг фруктов.

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос