Вопрос задан 18.04.2025 в 17:08. Предмет Алгебра. Спрашивает Радзієвська Світлана.

Две машинистки должны были напечатать некоторую рукопись. Сначала 5 дней работала только первая машинистка, а затем к ней присоединилась вторая, и они закончили перепечатку через 3 дня совместной работы. известно, что первой машинистке на перепечатку рукописи потребовалось бы на 5 дней меньше, чем второй. за какое время могла бы перепечатать эту рукопись каждая машинистка, работая отдельно?

Перейти к ответам

Ответы на вопрос

Отвечает Хлебникова Милана.

Для решения этой задачи введем следующие обозначения:

  • Пусть время, которое первая машинистка потратила бы на перепечатку рукописи, равно xx дней.
  • Тогда время, которое вторая машинистка потратила бы на перепечатку рукописи, равно x+5x + 5 дней, так как известно, что первой машинистке на это нужно было бы 5 дней меньше.

Теперь обозначим объем работы как 1 рукопись (то есть вся работа — это 1 единица работы).

Шаг 1: Определение производительности каждой машинистки

  • Первая машинистка выполняет работу за xx дней, то есть её производительность равна 1x\frac{1}{x} рукописей в день.
  • Вторая машинистка выполняет работу за x+5x + 5 дней, то есть её производительность равна 1x+5\frac{1}{x + 5} рукописей в день.

Шаг 2: Расчет общего объема работы

  • За 5 дней работы первая машинистка успевает напечатать 5x\frac{5}{x} рукописей.
  • За 3 дня совместной работы обе машинистки вместе напечатают 3×(1x+1x+5)3 \times \left( \frac{1}{x} + \frac{1}{x + 5} \right) рукописей.

Так как общая работа составляет 1 рукопись, то можно составить следующее уравнение:

5x+3(1x+1x+5)=1\frac{5}{x} + 3 \left( \frac{1}{x} + \frac{1}{x + 5} \right) = 1

Шаг 3: Упростим уравнение

  1. Раскроем скобки:
5x+3×1x+3×1x+5=1\frac{5}{x} + 3 \times \frac{1}{x} + 3 \times \frac{1}{x + 5} = 1
  1. Сложим аналогичные дроби:
5+3x+3x+5=1\frac{5 + 3}{x} + \frac{3}{x + 5} = 1 8x+3x+5=1\frac{8}{x} + \frac{3}{x + 5} = 1
  1. Перейдем к общему знаменателю. Для этого домножим обе части уравнения на x(x+5)x(x + 5):
8(x+5)+3x=x(x+5)8(x + 5) + 3x = x(x + 5)
  1. Упростим выражение:
8x+40+3x=x2+5x8x + 40 + 3x = x^2 + 5x 11x+40=x2+5x11x + 40 = x^2 + 5x
  1. Переносим все в одну сторону:
x26x40=0x^2 - 6x - 40 = 0

Шаг 4: Решаем квадратное уравнение

Используем формулу для решения квадратных уравнений:

x=(6)±(6)241(40)21x = \frac{-(-6) \pm \sqrt{(-6)^2 - 4 \cdot 1 \cdot (-40)}}{2 \cdot 1} x=6±36+1602x = \frac{6 \pm \sqrt{36 + 160}}{2} x=6±1962x = \frac{6 \pm \sqrt{196}}{2} x=6±142x = \frac{6 \pm 14}{2}

Таким образом, два возможных значения для xx:

x=6+142=10илиx=6142=4x = \frac{6 + 14}{2} = 10 \quad \text{или} \quad x = \frac{6 - 14}{2} = -4

Так как время не может быть отрицательным, остаётся x=10x = 10.

Шаг 5: Находим время работы второй машинистки

Время работы второй машинистки равно x+5=10+5=15x + 5 = 10 + 5 = 15 дней.

Ответ:

  • Первая машинистка могла бы перепечатать рукопись за 10 дней.
  • Вторая машинистка могла бы перепечатать её за 15 дней.

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Алгебра 07.07.2025 12:56 21 Модин Федя

Последние заданные вопросы в категории Алгебра

Алгебра 07.07.2025 12:56 21 Модин Федя
Алгебра 07.07.2025 11:57 16 Горбаченко Артём
Алгебра 07.07.2025 10:55 24 Просалов Кирилл
Алгебра 07.07.2025 09:56 14 Александрова Анастасия
Алгебра 07.07.2025 08:52 10 Сенавьев Никита
Алгебра 07.07.2025 07:54 23 Рашитова Влада
Алгебра 07.07.2025 06:52 23 Гринь Тёма
Алгебра 07.07.2025 05:58 13 Потанцев Роман
Алгебра 07.07.2025 04:51 22 Луганский Максим
Алгебра 06.07.2025 20:57 3 Мирная Лера
Задать вопрос