Вопрос задан 10.10.2024 в 08:37. Предмет Математика. Спрашивает Карпеченко Кира.

Укажите наименьшее из чисел 5/6,3/8,5/12,3/4 срочно!!!!

Перейти к ответам

Ответы на вопрос

Отвечает Клевцова Евгения.

Чтобы сравнить дроби и найти наименьшую из них, нужно привести их к общему знаменателю. Давайте рассмотрим дроби: 56\frac{5}{6}, 38\frac{3}{8}, 512\frac{5}{12}, и 34\frac{3}{4}.

Шаг 1: Найдём общий знаменатель

Общий знаменатель должен быть кратен всем знаменателям (6, 8, 12 и 4). Наименьшее общее кратное этих чисел — 24.

Шаг 2: Приведём дроби к знаменателю 24

Теперь умножим числитель и знаменатель каждой дроби, чтобы у всех них был знаменатель 24:

  1. Для 56\frac{5}{6}:

    56=5×46×4=2024\frac{5}{6} = \frac{5 \times 4}{6 \times 4} = \frac{20}{24}
  2. Для 38\frac{3}{8}:

    38=3×38×3=924\frac{3}{8} = \frac{3 \times 3}{8 \times 3} = \frac{9}{24}
  3. Для 512\frac{5}{12}:

    512=5×212×2=1024\frac{5}{12} = \frac{5 \times 2}{12 \times 2} = \frac{10}{24}
  4. Для 34\frac{3}{4}:

    34=3×64×6=1824\frac{3}{4} = \frac{3 \times 6}{4 \times 6} = \frac{18}{24}

Шаг 3: Сравним дроби с одинаковым знаменателем

Теперь у нас есть дроби с одинаковым знаменателем 24:

  • 2024\frac{20}{24}
  • 924\frac{9}{24}
  • 1024\frac{10}{24}
  • 1824\frac{18}{24}

Наименьшее числительное — это 9, то есть наименьшая дробь — 924\frac{9}{24}, что соответствует исходной дроби 38\frac{3}{8}.

Ответ:

Наименьшее из чисел — 38\frac{3}{8}.

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос