Вопрос задан 05.02.2025 в 23:05. Предмет Математика. Спрашивает Плотникова Александра.

Основанием прямой призмы является равнобедренная трапеция с основаниями 11 см и 27 см и высотой 6 см. Найдите площадь боковой поверхности, если боковое ребро равно 10 см.

Перейти к ответам

Ответы на вопрос

Отвечает Чижов Валерий.

Для того чтобы найти площадь боковой поверхности прямой призмы, нам нужно вычислить площадь всех боковых граней. Боковые грани призмы являются прямоугольниками, и каждый из них имеет одну сторону, равную боковому ребру, а другую сторону — это высота, которая определяется расстоянием между параллельными основаниями. В данном случае боковое ребро равно 10 см, а для вычисления площади боковой поверхности, нам нужно определить длину перпендикуляра, который соединяет верхнее и нижнее основание трапеции.

  1. Определяем высоту боковых граней призмы: Площадь боковой поверхности прямой призмы складывается из площади четырёх прямоугольных боковых граней, и каждая такая грань имеет одну сторону, равную боковому ребру (10 см), а другую — это длина отрезка, который является проекцией бокового ребра на основание.

  2. **Теперь уточним, что прямоугольная трапеция находится таким образом, что одна из сторон призмы равна длине высоты.

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос