Вопрос задан 28.04.2025 в 23:13. Предмет Математика. Спрашивает Громова Вилена.

Решить уравнение 1/√x = 1/6

Перейти к ответам

Ответы на вопрос

Отвечает Әлби Қуаныш.

Для того чтобы решить уравнение 1x=16\frac{1}{\sqrt{x}} = \frac{1}{6}, начнём с того, что можно избавиться от дробей, умножив обе части уравнения на x\sqrt{x}.

  1. Умножим обе стороны уравнения на x\sqrt{x}:

x1x=16x\sqrt{x} \cdot \frac{1}{\sqrt{x}} = \frac{1}{6} \cdot \sqrt{x} 1=x61 = \frac{\sqrt{x}}{6}
  1. Теперь умножим обе стороны уравнения на 6, чтобы избавиться от дроби:

61=x6 \cdot 1 = \sqrt{x} x=6\sqrt{x} = 6
  1. Теперь, чтобы найти xx, возведем обе стороны уравнения в квадрат:

(x)2=62(\sqrt{x})^2 = 6^2 x=36x = 36

Ответ: x=36x = 36.

Таким образом, решение уравнения — это x=36x = 36.

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос