Вопрос задан 26.03.2025 в 07:31. Предмет Алгебра. Спрашивает Державина Таня.

Помогите решить задачу.В двух бидонах 28 литров молока .Если из первого бидона перелить во второй 5 литров молока,то в первом бидоне окажется в 3 раза меньше молока,Чем во втором .Сколько литров молока во втором бидоне? 7 класс ПОМОГИТЕ!!!!SOOS

Перейти к ответам

Ответы на вопрос

Отвечает Громова Ольга.

Давайте решим задачу шаг за шагом.

Обозначим количество молока в первом бидоне как xx литров, а количество молока во втором бидоне как yy литров. Из условия задачи известно, что общее количество молока в обоих бидонах — 28 литров, то есть:

x+y=28(1)x + y = 28 \quad \text{(1)}

Теперь, если мы переливаем 5 литров молока из первого бидона во второй, то в первом бидоне останется x5x - 5 литров молока, а во втором станет y+5y + 5 литров молока. В соответствии с условием задачи, после этого в первом бидоне молока окажется в 3 раза меньше, чем во втором. То есть:

x5=13(y+5)(2)x - 5 = \frac{1}{3} (y + 5) \quad \text{(2)}

Теперь у нас есть система из двух уравнений:

  1. x+y=28x + y = 28
  2. x5=13(y+5)x - 5 = \frac{1}{3} (y + 5)

Решим эту систему.

Шаг 1. Упростим второе уравнение.

Умножим обе части уравнения (2) на 3, чтобы избавиться от дроби:

3(x5)=y+53(x - 5) = y + 5

Распишем:

3x15=y+53x - 15 = y + 5

Теперь перенесем все элементы с yy на одну сторону, а все остальные на другую:

3xy=20(3)3x - y = 20 \quad \text{(3)}

Шаг 2. Подставим выражение для yy из уравнения (1) в уравнение (3).

Из уравнения (1) выразим yy:

y=28xy = 28 - x

Теперь подставим это в уравнение (3):

3x(28x)=203x - (28 - x) = 20

Раскроем скобки:

3x28+x=203x - 28 + x = 20

Преобразуем:

4x28=204x - 28 = 20

Добавим 28 к обеим частям:

4x=484x = 48

Разделим на 4:

x=12x = 12

Шаг 3. Найдем yy.

Теперь, когда мы знаем x=12x = 12, подставим это в уравнение (1):

x+y=28x + y = 28 12+y=2812 + y = 28

Отсюда:

y=2812=16y = 28 - 12 = 16

Ответ:

Количество молока во втором бидоне — 16 литров.

Проверим решение:

До переливания в первом бидоне было 12 литров, а во втором — 16 литров. После того как мы переливаем 5 литров, в первом бидоне остаётся 125=712 - 5 = 7 литров, а во втором становится 16+5=2116 + 5 = 21 литр. Действительно, 77 литров в 3 раза меньше 2121 литра, что соответствует условию задачи.

Значит, ответ правильный. Вопрос решён!

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Алгебра 07.07.2025 12:56 21 Модин Федя

Последние заданные вопросы в категории Алгебра

Алгебра 07.07.2025 12:56 21 Модин Федя
Алгебра 07.07.2025 11:57 16 Горбаченко Артём
Алгебра 07.07.2025 10:55 24 Просалов Кирилл
Алгебра 07.07.2025 09:56 14 Александрова Анастасия
Алгебра 07.07.2025 08:52 10 Сенавьев Никита
Алгебра 07.07.2025 07:54 23 Рашитова Влада
Алгебра 07.07.2025 06:52 23 Гринь Тёма
Алгебра 07.07.2025 05:58 13 Потанцев Роман
Алгебра 07.07.2025 04:51 22 Луганский Максим
Алгебра 06.07.2025 20:57 3 Мирная Лера
Задать вопрос