Вопрос задан 11.04.2025 в 23:57. Предмет Алгебра. Спрашивает Самбетов Мансур.

Представь в виде многочлена:(a-2)(a+7)​

Перейти к ответам

Ответы на вопрос

Отвечает Смирнов Евгений.

Чтобы представить выражение (a2)(a+7)(a - 2)(a + 7) в виде многочлена, нужно выполнить распределение (или по-другому — раскрытие скобок).

  1. Начнем с того, что мы умножаем каждое слагаемое первого множителя (a2)(a - 2) на каждое слагаемое второго множителя (a+7)(a + 7).

  2. Сначала умножаем aa на aa:

aa=a2a \cdot a = a^2
  1. Далее умножаем aa на 77:
a7=7aa \cdot 7 = 7a
  1. Теперь умножаем 2-2 на aa:
2a=2a-2 \cdot a = -2a
  1. И наконец, умножаем 2-2 на 77:
27=14-2 \cdot 7 = -14

Теперь складываем все эти результаты:

a2+7a2a14a^2 + 7a - 2a - 14
  1. Объединяем подобные слагаемые 7a7a и 2a-2a:
a2+(7a2a)14=a2+5a14a^2 + (7a - 2a) - 14 = a^2 + 5a - 14

Таким образом, выражение (a2)(a+7)(a - 2)(a + 7) в виде многочлена будет:

a2+5a14a^2 + 5a - 14

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Алгебра 07.07.2025 12:56 21 Модин Федя

Последние заданные вопросы в категории Алгебра

Алгебра 07.07.2025 12:56 21 Модин Федя
Алгебра 07.07.2025 11:57 16 Горбаченко Артём
Алгебра 07.07.2025 10:55 24 Просалов Кирилл
Алгебра 07.07.2025 09:56 14 Александрова Анастасия
Алгебра 07.07.2025 08:52 10 Сенавьев Никита
Алгебра 07.07.2025 07:54 23 Рашитова Влада
Алгебра 07.07.2025 06:52 23 Гринь Тёма
Алгебра 07.07.2025 05:58 13 Потанцев Роман
Алгебра 07.07.2025 04:51 22 Луганский Максим
Алгебра 06.07.2025 20:57 3 Мирная Лера
Задать вопрос