Вопрос задан 13.04.2025 в 17:12. Предмет Алгебра. Спрашивает Олійник Каріна.

Пассажир спустился бегом по движущемуся эскалатору метро за 15 с. В следующий раз он спустился вниз в том же темпе, но по неподвижному эскалатору за 24 с.За сколько секунд спустился бы пассажир, стоя на ступеньке движущегося эскалатора?

Перейти к ответам

Ответы на вопрос

Отвечает Плотникова Даша.

Задача заключается в нахождении времени, которое пассажир потратит на спуск по движущемуся эскалатору, если он будет стоять на одной из ступенек.

Давайте обозначим несколько переменных:

  • vev_e — скорость эскалатора (в метрах в секунду),
  • vpv_p — скорость пассажира относительно эскалатора (в метрах в секунду),
  • NN — количество ступенек на эскалаторе (для упрощения, можно считать это число известным).

1. Спуск по движущемуся эскалатору (время = 15 секунд)

Когда пассажир спускается по движущемуся эскалатору, его скорость относительно земли — это сумма скорости его собственного движения и скорости эскалатора. Время, которое он тратит на спуск, равно 15 с.

Тогда у нас есть следующее уравнение для времени:

t1=Nvp+ve=15 секунд.t_1 = \frac{N}{v_p + v_e} = 15 \text{ секунд}.

2. Спуск по неподвижному эскалатору (время = 24 секунды)

Если эскалатор неподвижен, то пассажир спускается только с его собственной скоростью vpv_p. Время, которое он тратит на спуск в этом случае:

t2=Nvp=24 секунд.t_2 = \frac{N}{v_p} = 24 \text{ секунд}.

3. Ожидаемое время при стоянии на движущемся эскалаторе

Когда пассажир стоит на эскалаторе, его скорость относительно земли — это только скорость самого эскалатора, то есть vev_e. Время, которое он потратит на спуск, будет равно:

t3=Nve.t_3 = \frac{N}{v_e}.

Решение системы уравнений

Теперь решим систему уравнений. Из второго уравнения можно выразить скорость пассажира vpv_p:

vp=N24.v_p = \frac{N}{24}.

Подставим это значение в первое уравнение:

Nvp+ve=15NN24+ve=15.\frac{N}{v_p + v_e} = 15 \quad \Rightarrow \quad \frac{N}{\frac{N}{24} + v_e} = 15.

Умножим обе стороны на (N24+ve)\left( \frac{N}{24} + v_e \right) и решим относительно vev_e:

N=15(N24+ve)N=15N24+15veN15N24=15ve.N = 15 \left( \frac{N}{24} + v_e \right) \quad \Rightarrow \quad N = \frac{15N}{24} + 15v_e \quad \Rightarrow \quad N - \frac{15N}{24} = 15v_e.

Приведем к общему знаменателю:

24N2415N24=15ve9N24=15veve=9N2415=N40.\frac{24N}{24} - \frac{15N}{24} = 15v_e \quad \Rightarrow \quad \frac{9N}{24} = 15v_e \quad \Rightarrow \quad v_e = \frac{9N}{24 \cdot 15} = \frac{N}{40}.

Теперь, зная ve=N40v_e = \frac{N}{40}, можем найти время t3t_3 для спуска, стоя на эскалаторе:

t3=Nve=NN40=40 секунд.t_3 = \frac{N}{v_e} = \frac{N}{\frac{N}{40}} = 40 \text{ секунд}.

Ответ:

Пассажир спустится за 40 секунд, если будет стоять на одной из ступенек движущегося эскалатора.

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Алгебра 07.07.2025 12:56 21 Модин Федя

Последние заданные вопросы в категории Алгебра

Алгебра 07.07.2025 12:56 21 Модин Федя
Алгебра 07.07.2025 11:57 16 Горбаченко Артём
Алгебра 07.07.2025 10:55 24 Просалов Кирилл
Алгебра 07.07.2025 09:56 14 Александрова Анастасия
Алгебра 07.07.2025 08:52 10 Сенавьев Никита
Алгебра 07.07.2025 07:54 23 Рашитова Влада
Алгебра 07.07.2025 06:52 23 Гринь Тёма
Алгебра 07.07.2025 05:58 13 Потанцев Роман
Алгебра 07.07.2025 04:51 22 Луганский Максим
Алгебра 06.07.2025 20:57 3 Мирная Лера
Задать вопрос