Среднее арифметическое десяти различных натуральных чисел равно 10. Какое наибольшее возможное значение может принимать самое большое из этих чисел?
Ответы на вопрос
Чтобы решить задачу, давайте обозначим десять различных натуральных чисел как , где . Нам нужно найти наибольшее значение числа , при условии, что среднее арифметическое этих чисел равно 10.
Среднее арифметическое чисел можно выразить как:
Умножим обе стороны на 10, чтобы избавиться от дроби:
Теперь наша задача — найти такие десять различных натуральных чисел, сумма которых равна 100, и при этом максимизировать значение , то есть самое большое из этих чисел.
Для этого начнем с минимальных возможных значений для чисел . Поскольку числа должны быть различными натуральными числами, выберем их как первые девять чисел, начиная с 1:
Сумма этих чисел равна:
Теперь, чтобы получить сумму всех десяти чисел равной 100, нужно, чтобы удовлетворяло следующему уравнению:
Отсюда:
Таким образом, наибольшее возможное значение для самого большого числа равно 55.
Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili

