
Три друга встретились в компьютерном клубе. Через какое наименьшее время повторится их встреча, если один из них ходит туда 1 раз в 5 дней , второй – раз в 12 дней , третий – раз в 10 дней? Решить задачу с РЕШЕНИЕМ!!!!!!!
Ответы на вопрос

Чтобы найти, через какое наименьшее время три друга снова встретятся в компьютерном клубе, нужно определить наименьшее общее кратное (НОК) для периодов, с которыми каждый из них посещает клуб.
Итак, у нас есть три друга с интервалами посещений:
- Первый друг ходит раз в 5 дней.
- Второй друг — раз в 12 дней.
- Третий друг — раз в 10 дней.
Для того чтобы они все снова встретились в клубе одновременно, нужно найти наименьшее число, которое делится на 5, 12 и 10. Это будет наименьшее общее кратное (НОК) этих чисел.
Шаг 1: Разложим числа на простые множители
Шаг 2: Найдем НОК
Чтобы найти НОК, возьмем каждый уникальный множитель, присутствующий в разложениях чисел, с наибольшей степенью:
- Множитель присутствует в числах 12 и 10, наибольшая степень .
- Множитель присутствует в числе 12, наибольшая степень .
- Множитель присутствует в числах 5 и 10, наибольшая степень .
Теперь перемножим эти наибольшие степени:
Ответ
Наименьшее общее кратное для чисел 5, 12 и 10 равно 60. Это значит, что все три друга встретятся снова в компьютерном клубе через 60 дней.
Ответ: Три друга снова встретятся через 60 дней.
Похожие вопросы









Топ вопросов за вчера в категории Математика







Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili