Вопрос задан 04.03.2025 в 22:24. Предмет Алгебра. Спрашивает Аухатбай Индира.

А) постройте график функции y=cosx на промежутке (-П/2;П) б) постройте график функции y=2cos(x+П/6)-1 на промежутке (-П/2;П)
ПОЖАЛУЙСТА ПОМОГИТЕ ​

Перейти к ответам

Ответы на вопрос

Отвечает Може Аня.

Давайте разберемся с каждой функцией и постараемся построить их графики.

А) Построение графика функции y=cos(x)y = \cos(x) на промежутке (π2,π)(- \frac{\pi}{2}, \pi):

  1. Основные характеристики функции y=cos(x)y = \cos(x):
    • Функция косинуса — это периодическая функция с периодом 2π2\pi, то есть её график повторяется каждые 2π2\pi единиц по оси xx.
    • Максимальное значение косинуса равно 1, минимальное — -1.
    • Функция cos(x)\cos(x) имеет следующие ключевые точки:
      • cos(0)=1\cos(0) = 1
      • cos(π2)=0\cos(\frac{\pi}{2}) = 0
      • cos(π)=1\cos(\pi) = -1
      • cos(π2)=0\cos(-\frac{\pi}{2}) = 0
  2. Как построить график:
    • Начнем с оси xx, отметим точки, соответствующие значениям функции cos(x)\cos(x) на ключевых углах: π2,0,π2,π-\frac{\pi}{2}, 0, \frac{\pi}{2}, \pi.
    • Подставим эти значения в уравнение y=cos(x)y = \cos(x):
      • При x=π2x = -\frac{\pi}{2}, y=cos(π2)=0y = \cos(-\frac{\pi}{2}) = 0.
      • При x=0x = 0, y=cos(0)=1y = \cos(0) = 1.
      • При x=π2x = \frac{\pi}{2}, y=cos(π2)=0y = \cos(\frac{\pi}{2}) = 0.
      • При x=πx = \pi, y=cos(π)=1y = \cos(\pi) = -1.
    • Соединив эти точки плавной кривой, получим график функции.

Б) Построение графика функции y=2cos(x+π6)1y = 2 \cos(x + \frac{\pi}{6}) - 1 на промежутке (π2,π)(- \frac{\pi}{2}, \pi):

  1. Анализ функции:

    • В этой функции присутствуют две модификации:
      • Коэффициент 22 перед косинусом растягивает график по вертикали, увеличивая амплитуду функции. Теперь максимальное значение функции будет 22, а минимальное 2-2 (до того, как была добавлена константа -1).
      • Сдвиг аргумента на π6\frac{\pi}{6} сдвигает график по оси xx на π6\frac{\pi}{6} влево.
      • Константа 1-1 сдвигает график по оси yy на 1 единицу вниз.
  2. Шаги для построения графика:

    • Начнем с базового графика функции y=cos(x)y = \cos(x).
    • Сначала сдвигаем график на π6\frac{\pi}{6} влево. Это означает, что все ключевые точки косинуса сдвигаются на π6\frac{\pi}{6}.
    • Затем умножаем полученную функцию на 2, что увеличивает амплитуду (максимум станет равен 2, минимум — -2).
    • После этого сдвигаем график на 1 единицу вниз. То есть, значение yy в каждой точке будет уменьшаться на 1.
  3. Ключевые точки для построения:

    • При x=π2x = -\frac{\pi}{2}, подставим x+π6x + \frac{\pi}{6} в cos\cos:
      • cos(π2+π6)=cos(π3)=12\cos(-\frac{\pi}{2} + \frac{\pi}{6}) = \cos(-\frac{\pi}{3}) = \frac{1}{2}.
      • Умножаем на 2: 212=12 \cdot \frac{1}{2} = 1.
      • Сдвигаем на 1 вниз: 11=01 - 1 = 0.
    • При x=0x = 0:
      • cos(0+π6)=cos(π6)=32\cos(0 + \frac{\pi}{6}) = \cos(\frac{\pi}{6}) = \frac{\sqrt{3}}{2}.
      • Умножаем на 2: 232=32 \cdot \frac{\sqrt{3}}{2} = \sqrt{3}

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Алгебра 07.07.2025 12:56 21 Модин Федя

Последние заданные вопросы в категории Алгебра

Алгебра 07.07.2025 12:56 21 Модин Федя
Алгебра 07.07.2025 11:57 16 Горбаченко Артём
Алгебра 07.07.2025 10:55 24 Просалов Кирилл
Алгебра 07.07.2025 09:56 14 Александрова Анастасия
Алгебра 07.07.2025 08:52 10 Сенавьев Никита
Алгебра 07.07.2025 07:54 23 Рашитова Влада
Алгебра 07.07.2025 06:52 23 Гринь Тёма
Алгебра 07.07.2025 05:58 13 Потанцев Роман
Алгебра 07.07.2025 04:51 22 Луганский Максим
Алгебра 06.07.2025 20:57 3 Мирная Лера
Задать вопрос