
Дан куб ABCDA1B1C1D1 с длиной ребра 1 ед. изм.
На ребре A1D1 находится точка M так, что A1M:MD1=2:3.
Определи синус угла ϕ между прямой AM и диагональной плоскостью(BB1D1D).
Ответы на вопрос

Чтобы найти синус угла между прямой и диагональной плоскостью в кубе, где длина ребра куба равна 1, нужно тщательно проанализировать геометрическую ситуацию и использовать векторы.
1. Определим координаты точек:
Рассмотрим куб, расположенный в трехмерном пространстве с вершинами:
- ,
- ,
- ,
- ,
- ,
- ,
- ,
- .
Точка расположена на ребре , и отношение . Так как длина ребра куба равна 1, расстояние от до составляет 1 единицу. Тогда точка делит ребро в отношении 2:3.
Мы можем выразить координаты точки как линейную комбинацию координат точек и :
Подставляем координаты и :
Таким образом, .
2. Определим уравнение плоскости :
Для того чтобы найти уравнение плоскости, нам нужно три точки, которые её определяют. Известно, что точками на плоскости являются , и . Мы будем искать нормаль к этой плоскости, для чего вычислим два вектора, лежащих в плоскости, и затем найдём их векторное произведение.
Векторы и :
Теперь найдём их векторное произведение:
Похожие вопросы









Топ вопросов за вчера в категории Геометрия







Последние заданные вопросы в категории Геометрия









-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili