Вопрос задан 02.03.2025 в 15:13. Предмет Математика. Спрашивает Макаров Пётр.

Решите неравенство 5-2(-3x+5)>1
решите неравенство -10+10(-7x+5)>2
решите неравенство 7-3(-6x+7)<или = -1
решите неравенство -4+2(-10x-3)<или = -6
решите неравенство 2+2(1-6x)<3x-9

Перейти к ответам

Ответы на вопрос

Отвечает Огороднік Марічка.

Давайте решим каждое неравенство по очереди.

1. Решаем неравенство:

52(3x+5)>15 - 2(-3x + 5) > 1

Раскроем скобки:

52(3x+5)=5+6x105 - 2(-3x + 5) = 5 + 6x - 10 6x5>16x - 5 > 1

Теперь, изолируем xx. Для этого сначала прибавим 5 к обеим частям неравенства:

6x>66x > 6

Теперь делим обе части на 6:

x>1x > 1

2. Решаем неравенство:

10+10(7x+5)>2-10 + 10(-7x + 5) > 2

Раскроем скобки:

10+10(7x+5)=1070x+50-10 + 10(-7x + 5) = -10 - 70x + 50 70x+40>2-70x + 40 > 2

Теперь, изолируем xx. Для этого сначала вычтем 40 из обеих частей:

70x>38-70x > -38

Теперь делим обе части на -70, и не забываем поменять знак неравенства (так как делим на отрицательное число):

x<3870=1935x < \frac{38}{70} = \frac{19}{35}

Таким образом, решение:

x<1935x < \frac{19}{35}

3. Решаем неравенство:

73(6x+7)17 - 3(-6x + 7) \leq -1

Раскроем скобки:

73(6x+7)=7+18x217 - 3(-6x + 7) = 7 + 18x - 21 18x14118x - 14 \leq -1

Теперь изолируем xx. Прибавим 14 к обеим частям:

18x1318x \leq 13

Теперь делим обе части на 18:

x1318x \leq \frac{13}{18}

4. Решаем неравенство:

4+2(10x3)6-4 + 2(-10x - 3) \leq -6

Раскроем скобки:

4+2(10x3)=420x6-4 + 2(-10x - 3) = -4 - 20x - 6 20x106-20x - 10 \leq -6

Теперь изолируем xx. Сначала прибавим 10 к обеим частям:

20x4-20x \leq 4

Теперь делим обе части на -20, не забывая поменять знак неравенства:

x15x \geq -\frac{1}{5}

5. Решаем неравенство:

2+2(16x)<3x92 + 2(1 - 6x) < 3x - 9

Раскроем скобки:

2+2(16x)=2+212x=412x2 + 2(1 - 6x) = 2 + 2 - 12x = 4 - 12x 412x<3x94 - 12x < 3x - 9

Теперь изолируем xx. Для этого сначала прибавим 12x к обеим частям:

4<15x94 < 15x - 9

Затем прибавим 9 к обеим частям:

13<15x13 < 15x

Теперь делим обе части на 15:

1315<x\frac{13}{15} < x

Таким образом, решение:

x>1315x > \frac{13}{15}

Ответы:

  1. x>1x > 1
  2. x<1935x < \frac{19}{35}
  3. x1318x \leq \frac{13}{18}
  4. x15x \geq -\frac{1}{5}
  5. x>1315x > \frac{13}{15}

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос