Вопрос задан 28.02.2025 в 21:34. Предмет Алгебра. Спрашивает Герасимов Максим.

В 8 ч утра экскурсанты отправились вниз по течению реки и,проплыв 35 км,сделали остановку на 3,5ч,а затем вернулись обратно.Возратились они в 17 ч 30 мин.Сколько времени плыли экскурсанты до места отдыха,если скорость течения реки 2 км/ч

Перейти к ответам

Ответы на вопрос

Отвечает Карпенко Даня.

Для того чтобы решить эту задачу, давайте разобьем её на несколько шагов.

  1. Дано:

    • Экскурсанты плыли вниз по реке, а затем возвращались обратно.
    • Расстояние до места отдыха составило 35 км.
    • Время, которое они провели на отдыхе, равно 3,5 ч.
    • Время возвращения составило с 8:00 до 17:30, то есть 9,5 ч.
    • Скорость течения реки равна 2 км/ч.
  2. Обозначим:

    • Скорость самого судна относительно воды — vv км/ч.
    • Время, которое экскурсанты потратили на путь вниз (до места отдыха), обозначим как t1t_1.
    • Время, которое они потратили на путь вверх (обратно), обозначим как t2t_2.
  3. Для пути вниз (по течению):

    • Скорость судна относительно берега при движении вниз по реке будет равна v+2v + 2 км/ч (потому что скорость течения реки добавляется к скорости судна).
    • Расстояние до места отдыха — 35 км.
    • Время, которое они плыли вниз: t1=35v+2.t_1 = \frac{35}{v + 2}.
  4. Для пути вверх (против течения):

    • Скорость судна относительно берега при движении вверх будет равна v2v - 2 км/ч (потому что скорость течения реки препятствует движению).
    • Расстояние также 35 км.
    • Время, которое они плыли вверх: t2=35v2.t_2 = \frac{35}{v - 2}.
  5. Общее время пути: Экскурсанты потратили 9,5 ч на путь вниз и вверх, а также 3,5 ч на отдых. Таким образом, общее время можно выразить следующим образом:

    t1+t2+3,5=9,5.t_1 + t_2 + 3,5 = 9,5.

    То есть, время на путь вниз и вверх без учёта отдыха составило:

    t1+t2=6.t_1 + t_2 = 6.
  6. Подставляем выражения для t1t_1 и t2t_2:

    35v+2+35v2=6.\frac{35}{v + 2} + \frac{35}{v - 2} = 6.
  7. Решаем уравнение: Чтобы решить это уравнение, привели его к общему знаменателю:

    35(v2)+35(v+2)(v+2)(v2)=6.\frac{35(v - 2) + 35(v + 2)}{(v + 2)(v - 2)} = 6.

    Упростим числитель:

    35(v2)+35(v+2)=35v70+35v+70=70v.35(v - 2) + 35(v + 2) = 35v - 70 + 35v + 70 = 70v.

    Теперь уравнение примет вид:

    70vv24=6.\frac{70v}{v^2 - 4} = 6.

    Умножим обе части уравнения на v24v^2 - 4, чтобы избавиться от знаменателя:

    70v=6(v24).70v = 6(v^2 - 4).

    Раскроем скобки:

    70v=6v224.70v = 6v^2 - 24.

    Переносим все в одну сторону:

    6v270v24=0.6v^2 - 70v - 24 = 0.
  8. Решаем квадратное уравнение: Используем формулу для решения квадратных уравнений:

    v=(70)±(70)24(6)(24)2(6).v = \frac{-(-70) \pm \sqrt{(-70)^2 - 4(6)(-24)}}{2(6)}.

    Считаем дискриминант:

    D=(70)24(6)(24)=4900+576=5476.D = (-70)^2 - 4(6)(-24) = 4900 + 576 = 5476. 5476=74.\sqrt{5476} = 74.

    Подставляем в формулу:

    v=70±7412.v = \frac{70 \pm 74}{12}.

    Получаем два корня:

    v=70+7412=14412=12илиv=707412=412=13.v = \frac{70 + 74}{12} = \frac{144}{12} = 12 \quad \text{или} \quad v = \frac{70 - 74}{12} = \frac{-4}{12} = -\frac{1}{3}.

    Так как скорость не может быть отрицательной, то принимаем v=12v = 12 км/ч.

  9. Находим время, которое экскурсанты плыли до места отдыха: Теперь, когда мы знаем скорость судна относительно воды, можем найти время, которое они потратили на путь вниз:

    t1=35v+2=3512+2=3514=2,5ч.t_1 = \frac{35}{v + 2} = \frac{35}{12 + 2} = \frac{35}{14} = 2,5 \, \text{ч}.

Ответ: Экскурсанты плыли до места отдыха 2,5 часа.

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Алгебра 07.07.2025 12:56 21 Модин Федя

Последние заданные вопросы в категории Алгебра

Алгебра 07.07.2025 12:56 21 Модин Федя
Алгебра 07.07.2025 11:57 16 Горбаченко Артём
Алгебра 07.07.2025 10:55 24 Просалов Кирилл
Алгебра 07.07.2025 09:56 14 Александрова Анастасия
Алгебра 07.07.2025 08:52 10 Сенавьев Никита
Алгебра 07.07.2025 07:54 23 Рашитова Влада
Алгебра 07.07.2025 06:52 23 Гринь Тёма
Алгебра 07.07.2025 05:58 13 Потанцев Роман
Алгебра 07.07.2025 04:51 22 Луганский Максим
Алгебра 06.07.2025 20:57 3 Мирная Лера
Задать вопрос