Вопрос задан 10.10.2024 в 14:50. Предмет Геометрия. Спрашивает Смирнова Света.

Высота трапеции равна 8. При каких значениях оснований значения площади будут равны? Помогите пожалуйста. 4 и 8

1 и 6

2 и 6

3 и 6

3 и 7

1 и 7

Перейти к ответам

Ответы на вопрос

Отвечает Ягужинская Илона.

Чтобы найти значения оснований трапеции, при которых площадь будет одинаковой, воспользуемся формулой для вычисления площади трапеции:

S=(a+b)h2S = \frac{(a + b) \cdot h}{2}

где SS — площадь трапеции, aa и bb — основания трапеции, а hh — высота.

В данном случае высота h=8h = 8. Площадь будет равна:

S=(a+b)82=4(a+b)S = \frac{(a + b) \cdot 8}{2} = 4(a + b)

Теперь нам нужно, чтобы площади двух трапеций были равны. Для этого нам нужно установить равенство площадей для разных пар оснований:

  1. Пара оснований (4 и 8): S1=4(4+8)=412=48S_1 = 4(4 + 8) = 4 \cdot 12 = 48

  2. Пара оснований (1 и 6): S2=4(1+6)=47=28S_2 = 4(1 + 6) = 4 \cdot 7 = 28

  3. Пара оснований (2 и 6): S3=4(2+6)=48=32S_3 = 4(2 + 6) = 4 \cdot 8 = 32

  4. Пара оснований (3 и 6): S4=4(3+6)=49=36S_4 = 4(3 + 6) = 4 \cdot 9 = 36

  5. Пара оснований (3 и 7): S5=4(3+7)=410=40S_5 = 4(3 + 7) = 4 \cdot 10 = 40

  6. Пара оснований (1 и 7): S6=4(1+7)=48=32S_6 = 4(1 + 7) = 4 \cdot 8 = 32

Теперь проанализируем полученные площади.

  • Пара (1 и 6) дает площадь 28.
  • Пара (2 и 6) дает площадь 32.
  • Пара (3 и 6) дает площадь 36.
  • Пара (3 и 7) дает площадь 40.
  • Пара (4 и 8) дает площадь 48.
  • Пара (1 и 7) также дает площадь 32.

Теперь заметим, что пары (2 и 6) и (1 и 7) имеют одинаковую площадь 32. Таким образом, значения оснований 2 и 6, а также 1 и 7 дают одинаковую площадь трапеции при высоте 8.

Таким образом, ответ на ваш вопрос: значения оснований, при которых площади будут равны — это пары (1 и 7) и (2 и 6).

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос