Вопрос задан 17.02.2026 в 17:57. Предмет Геометрия. Спрашивает Корьев Артур.

В параллелограмме меньшая высота и меньшая сторона равны 9 см и √82 см соответственно. Большая диагональ равна 15 см. Найдите площадь параллелограмма.

Перейти к ответам

Ответы на вопрос

Отвечает Слантов Руслан.

Для нахождения площади параллелограмма нужно использовать формулу:

S=ahS = a \cdot h

где aa — длина основания, а hh — высота.

В данном случае меньшая сторона параллелограмма равна a=82a = \sqrt{82} см, а меньшая высота h=9h = 9 см. Таким образом, площадь параллелограмма можно найти следующим образом:

S=829S = \sqrt{82} \cdot 9

Для упрощения вычислений:

829.055\sqrt{82} \approx 9.055

Теперь умножаем:

S9.055981.495S \approx 9.055 \cdot 9 \approx 81.495

Ответ: площадь параллелограмма примерно равна 81.5 см².

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос