
2. Правильная четырехугольная призма описана около цилиндра, радиус основания которого равен 1. Площадь боковой поверхности призмы равна 8. Найдите высоту. 3. В цилиндрический сосуд налили 2900 см^3 воды. Уровень жидкости оказался равным 20 см. В воду полностью погрузили деталь. При этом уровень жидкости в сосуде поднялся на 15 см. Чему равен объём детали? Ответ выразите в см^3. 4. В цилиндрическом сосуде уровень жидкости достигает 54 см. На какой высоте будет находиться уровень жидкости, если её перелить во второй цилиндрический сосуд, диаметр которого в 3 раза больше диаметра первого? Ответ выразите в сантиметрах.
Ответы на вопрос

-
Правильная четырехугольная призма, описанная около цилиндра:
Чтобы найти высоту правильной четырехугольной призмы, нужно учесть, что она описана около цилиндра. Радиус основания цилиндра равен 1, и площадь боковой поверхности призмы равна 8.
Четырехугольная призма имеет два прямоугольных основания и боковую поверхность, которая состоит из четырех прямоугольных сторон. Каждая из этих сторон имеет ширину, равную периметру основания цилиндра, и высоту, равную высоте самой призмы.
Периметр основания цилиндра (круг) можно найти по формуле , где , то есть:
Площадь боковой поверхности призмы — это периметр основания, умноженный на высоту. Площадь боковой поверхности по условию задачи равна 8, следовательно:
Подставим :
Решим это уравнение для :
Таким образом, высота призмы равна см.
-
Объем детали, погруженной в сосуд:
Сначала определим объем воды, вытолкнутой деталью. Объем поднявшейся жидкости можно найти, умножив площадь основания сосуда на изменение уровня воды. Из условия задачи известно, что уровень жидкости в сосуде поднялся на 15 см, а объем воды, который был в сосуде до погружения детали, равен 2900 см³.
Объем вытолкнутой жидкости равен объему детали, так как деталь полностью погружена в воду. Площадь основания сосуда можно найти через объем и высоту. Так как уровень жидкости до погружения детали был 20 см, то площадь основания сосуда можно вычислить по формуле:
Теперь, зная, что уровень воды поднялся на 15 см, объем вытолкнутой жидкости (и объем детали) можно найти как:
Таким образом, объем детали равен 2175 см³.
-
Изменение уровня жидкости при переливе в сосуд с большим диаметром:
Предположим, что первый сосуд имеет диаметр , а второй сосуд — диаметр , то есть диаметр второго сосуда в 3 раза больше. Площадь основания цилиндра пропорциональна квадрату его радиуса, а радиус второго сосуда в 3 раза больше, чем первого. Таким образом, площадь основания второго сосуда будет в раз больше.
Объем жидкости в первом сосуде, который равен , переливаем в второй сосуд. Объем оставшейся жидкости в первом сосуде остается тем же, но площадь основания второго сосуда больше, поэтому высота уровня жидкости в нем будет меньшей. Пусть — новый уровень жидкости во втором сосуде. Тогда для второго сосуда:
Так как , подставим это значение:
Упростим:
Таким образом, уровень жидкости во втором сосуде будет находиться на высоте 6 см.
Похожие вопросы









Топ вопросов за вчера в категории Геометрия







Последние заданные вопросы в категории Геометрия








-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili