Вопрос задан 14.04.2025 в 12:22. Предмет Геометрия. Спрашивает Асқаров Ахмет.

Найдите координаты отрезка АБ,если А(3:2) и Б(5:-4)

Перейти к ответам

Ответы на вопрос

Отвечает Сбойчаков Сергей.

Чтобы найти координаты отрезка AB, нужно сначала понять, что требуется. В данном случае мы ищем среднюю точку отрезка AB, которая делит отрезок пополам. Это можно сделать, используя формулу для нахождения середины отрезка, если заданы его концы.

Если точка A имеет координаты (x₁, y₁), а точка B — (x₂, y₂), то координаты середины отрезка M можно вычислить по следующим формулам:

xm=x1+x22x_m = \frac{x_1 + x_2}{2} ym=y1+y22y_m = \frac{y_1 + y_2}{2}

Теперь подставим координаты точек A(3, 2) и B(5, -4):

  1. Вычислим координату xmx_m:
xm=3+52=82=4x_m = \frac{3 + 5}{2} = \frac{8}{2} = 4
  1. Вычислим координату ymy_m:
ym=2+(4)2=242=22=1y_m = \frac{2 + (-4)}{2} = \frac{2 - 4}{2} = \frac{-2}{2} = -1

Таким образом, координаты средней точки отрезка AB — это (4, -1).

Это и есть искомая точка отрезка.

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос