
В трапеции АВСD основания ВС и АD относятся как 4 к 7 соответственно. Найдите площадь треугольника АВD, если площадь треугольника BСD равна 28.
Ответы на вопрос

Для решения этой задачи воспользуемся соотношениями площадей треугольников внутри трапеции. Нам даны основания трапеции и , которые относятся как 4:7, и известна площадь треугольника , равная 28. Необходимо найти площадь треугольника .
Шаг 1. Построение соотношений
Пусть длины оснований и равны и соответственно. Поскольку треугольники и имеют общую вершину и находятся внутри одной трапеции, их высоты (проведенные из точки к основаниям и ) будут одинаковыми.
Отношение площадей треугольников с одинаковой высотой пропорционально длинам их оснований. Это означает, что отношение площадей треугольников и будет таким же, как и отношение оснований и .
Шаг 2. Выражение отношения площадей
Так как основания и относятся как 4:7, отношение площадей треугольников и также равно 4:7. Пусть площадь треугольника равна . Тогда по отношению площадей можно записать:
Подставляем известное значение площади треугольника , которое равно 28:
Шаг 3. Решение уравнения
Решим это уравнение относительно :
Шаг 4. Ответ
Площадь треугольника равна 49.
Таким образом, площадь треугольника равна 49.
Похожие вопросы









Топ вопросов за вчера в категории Геометрия







Последние заданные вопросы в категории Геометрия









-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili