Вопрос задан 30.11.2024 в 18:05. Предмет Геометрия. Спрашивает Ильина Аля.

СРОЧНО, ПОЖАЛУЙСТА !!! Две стороны треугольника равны соответственно 1 см и корень 18 см, а угол между ними равен 45 градусов. Найти 3 сторону треугольника

Перейти к ответам

Ответы на вопрос

Отвечает Леонидова Анастасия.

Чтобы найти третью сторону треугольника, у которого две стороны равны 1 см и корень из 18 см, а угол между ними равен 45 градусам, можно воспользоваться теоремой косинусов. Эта теорема гласит, что для любого треугольника с сторонами aa, bb, и cc, и углом γ\gamma между сторонами aa и bb, справедливо следующее:

c2=a2+b22abcos(γ)c^2 = a^2 + b^2 - 2ab \cdot \cos(\gamma)

В нашем случае:

  • a=1a = 1 см
  • b=18b = \sqrt{18} см
  • γ=45\gamma = 45^\circ

Теперь подставим значения в формулу:

  1. Найдем a2a^2 и b2b^2:

    • a2=12=1a^2 = 1^2 = 1
    • b2=(18)2=18b^2 = (\sqrt{18})^2 = 18
  2. Теперь вычислим 2abcos(γ)2ab \cdot \cos(\gamma):

    • cos(45)=22\cos(45^\circ) = \frac{\sqrt{2}}{2}
    • 2ab=2118=2182ab = 2 \cdot 1 \cdot \sqrt{18} = 2\sqrt{18}
    • Значит, 2abcos(45)=21822=36=62ab \cdot \cos(45^\circ) = 2\sqrt{18} \cdot \frac{\sqrt{2}}{2} = \sqrt{36} = 6
  3. Теперь подставим все значения в формулу:

c2=1+186c^2 = 1 + 18 - 6 c2=196=13c^2 = 19 - 6 = 13
  1. Найдем cc:
c=13c = \sqrt{13}

Таким образом, третья сторона треугольника равна 13\sqrt{13} см.

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос