Вопрос задан 15.01.2025 в 06:30. Предмет Геометрия. Спрашивает Доронин Максим.

Найдите неизвестные стороны и углы прямоугольного треугольника по следующим данным: гипотенуза с - 30см , угол А=30 градусов

Перейти к ответам

Ответы на вопрос

Отвечает Музыченко Анастасия.

Давайте подробно разберём, как найти неизвестные стороны и углы прямоугольного треугольника, если известны гипотенуза c=30c = 30 см и угол A=30A = 30^\circ.

Шаг 1: Понимание начальных данных

В прямоугольном треугольнике есть:

  • угол AA (30 градусов),
  • гипотенуза cc (30 см),
  • неизвестные катеты aa и bb,
  • угол BB (смежный с углом AA).

Шаг 2: Найдём угол BB

Так как сумма углов в прямоугольном треугольнике равна 9090^\circ:

B=90A=9030=60B = 90^\circ - A = 90^\circ - 30^\circ = 60^\circ

Таким образом, B=60B = 60^\circ.

Шаг 3: Используем тригонометрические функции

Теперь можем найти катеты aa и bb с помощью синуса и косинуса.

  1. Найдём катет aa, прилежащий к углу AA:

    Применим формулу для косинуса:

    cosA=ac\cos A = \frac{a}{c}

    Подставим значения:

    cos30=a30\cos 30^\circ = \frac{a}{30}

    Значение cos30\cos 30^\circ равно 32\frac{\sqrt{3}}{2}:

    32=a30\frac{\sqrt{3}}{2} = \frac{a}{30}

    Теперь выразим aa:

    a=3032=15325.98смa = 30 \cdot \frac{\sqrt{3}}{2} = 15\sqrt{3} \approx 25.98 \, \text{см}
  2. Найдём катет bb, противолежащий углу AA:

    Используем формулу для синуса:

    sinA=bc\sin A = \frac{b}{c}

    Подставим значения:

    sin30=b30\sin 30^\circ = \frac{b}{30}

    Значение sin30\sin 30^\circ равно 12\frac{1}{2}:

    12=b30\frac{1}{2} = \frac{b}{30}

    Выразим bb:

    b=3012=15смb = 30 \cdot \frac{1}{2} = 15 \, \text{см}

Результаты

Таким образом, для данного прямоугольного треугольника:

  • Катет a25.98a \approx 25.98 см,
  • Катет b=15b = 15 см,
  • Угол B=60B = 60^\circ.

Мы нашли все неизвестные стороны и углы треугольника.

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос