
Площади двух подобных треугольников равны 25 и 16. Найдите сторону одного треугольника, если сходственная ей сторона другого треугольника равна 8
( дано и решение)
Ответы на вопрос

Площадь двух подобных треугольников пропорциональна квадрату коэффициента сходства (коэффициента подобия) между ними. То есть если коэффициент подобия между двумя треугольниками равен , то площади этих треугольников будут соотношением .
Дано:
- Площади треугольников: одна площадь равна 25, другая — 16.
- Одна из сторон одного треугольника (пусть это будет сторона ) равна 8.
- Нужно найти сходственную сторону другого треугольника .
Шаг 1: Найдём коэффициент подобия.
Площадь треугольников пропорциональна квадрату коэффициента подобия. Пусть коэффициент подобия между треугольниками равен . Тогда отношение их площадей можно записать как:
Подставим данные площади:
Теперь найдём :
Шаг 2: Используем коэффициент подобия для нахождения стороны.
Так как стороны подобных треугольников также пропорциональны коэффициенту подобия, то отношение соответствующих сторон будет равно . То есть:
Подставляем значения:
Теперь найдём , умножив обе стороны на и решив относительно :
Ответ: Сторона второго треугольника, соответствующая стороне 8 первого треугольника, равна 6,4.
Похожие вопросы









Топ вопросов за вчера в категории Геометрия







Последние заданные вопросы в категории Геометрия








-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili