
Вопрос задан 05.03.2025 в 19:00.
Предмет Геометрия.
Спрашивает Ямпилец Никита.
Стороны параллелограмма равны 12 см
и 8 см а угол между высотами , проведенными из вершины тупого угла , равен 30 градусов найти площать параллелограмма(пожалуйста рисунок и решение)
Ответы на вопрос

Отвечает Чернова Александра.
Для нахождения площади параллелограмма можно использовать формулу:
где и — длины сторон параллелограмма, а — угол между высотами. В данном случае, длины сторон параллелограмма равны 12 см и 8 см, угол между высотами из вершины тупого угла равен 30°.
Из задачи известно, что угол между высотами, проведенными из вершины тупого угла, составляет 30 градусов. Однако, поскольку угол между высотами является дополнением к тупому углу, то угол между сторонами, лежащими рядом с тупым углом, будет .
Используем эту информацию для расчета площади параллелограмма:
Так как , то:
Ответ: площадь параллелограмма равна 48 см².
Похожие вопросы









Топ вопросов за вчера в категории Геометрия







Последние заданные вопросы в категории Геометрия








Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili