Вопрос задан 14.04.2025 в 23:14. Предмет Геометрия. Спрашивает Владислав Владислав.

В равнобедренной трапеции высота делит большее основание на отрезки, равные 24 и 10 см. Найти среднюю линию трапеции.

Перейти к ответам

Ответы на вопрос

Отвечает Гончарова Анастасия.

В данном случае нам нужно найти среднюю линию равнобедренной трапеции, зная, что её высота делит большее основание на отрезки, равные 24 см и 10 см.

Шаг 1: Используем свойство равнобедренной трапеции

В равнобедренной трапеции высота, проведённая к большему основанию, делит его на два отрезка. В данном случае, эти отрезки равны 24 см и 10 см.

Средняя линия трапеции — это отрезок, соединяющий середины боковых сторон. Она всегда параллельна основаниям трапеции и равна полусумме оснований.

Шаг 2: Найдём большее основание

Большое основание трапеции состоит из двух частей: 24 см и 10 см. Поэтому его длина будет: b1=24+10=34см.b_1 = 24 + 10 = 34 \, \text{см}.

Шаг 3: Найдём меньшее основание

Меньшее основание можно найти, так как в равнобедренной трапеции боковые стороны равны, и высота делит большее основание на два отрезка. Эти отрезки — это проекции боковых сторон на основание. Поскольку разница между длинами этих отрезков равна 24 см – 10 см = 14 см, это означает, что меньшее основание равно 14 см.

Шаг 4: Находим среднюю линию

Средняя линия трапеции равна полусумме оснований:

Средняя линия=b1+b22=34+142=24см.\text{Средняя линия} = \frac{b_1 + b_2}{2} = \frac{34 + 14}{2} = 24 \, \text{см}.

Ответ:

Средняя линия трапеции равна 24 см.

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос