Вопрос задан 01.02.2025 в 14:59. Предмет Геометрия. Спрашивает Рысева Ксения.

в ромбе АВСД биссектриса угла ДСА Перпендикулярна к стороне АД. Найдите углы ромба

Перейти к ответам

Ответы на вопрос

Отвечает Зимин Коля.

Чтобы найти углы ромба ABCDABCD, учитывая, что биссектриса угла DCA\angle DCA перпендикулярна к стороне ADAD, разберем все условия и свойства ромба.

  1. Свойства ромба:

    • Все стороны ромба равны: AB=BC=CD=DAAB = BC = CD = DA.
    • Диагонали ромба пересекаются под прямым углом и делят друг друга пополам.
    • Противоположные углы ромба равны.
  2. Биссектриса угла DCA\angle DCA:

    • В условии сказано, что биссектриса угла DCA\angle DCA перпендикулярна к стороне ADAD.
    • Поскольку биссектриса делит угол пополам и одновременно перпендикулярна стороне ADAD, угол DCA\angle DCA равен 9090^\circ, так как биссектриса делит этот угол на два равных угла по 4545^\circ.
  3. Рассмотрение углов ромба:

    • В ромбе все углы в противоположных вершинах равны. Если угол DCA=90\angle DCA = 90^\circ, то противоположный угол ABC=90\angle ABC = 90^\circ.
    • Поскольку сумма всех углов четырёхугольника равна 360360^\circ, оставшиеся углы DAB\angle DAB и BCD\angle BCD также будут равны 9090^\circ.
  4. Вывод:

    • Таким образом, все углы ромба ABCDABCD равны 9090^\circ, что означает, что этот ромб является квадратом.

Ответ: Углы ромба ABCDABCD равны 9090^\circ.

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос