Вопрос задан 14.02.2025 в 23:12. Предмет Геометрия. Спрашивает Романюк Лада.

Сторона АС треугольника АВС проходит через центр описанной около него окружности. Найдите угол С, если угол А=44*. Ответ. Градусах

Перейти к ответам

Ответы на вопрос

Отвечает Филиппова Лиля.

Для решения задачи воспользуемся свойствами окружности, описанной около треугольника, и теоремой об углах треугольника.

Дано:

  1. Угол A=44\angle A = 44^\circ.
  2. Сторона ACAC проходит через центр описанной окружности.

Анализ:

Если сторона ACAC проходит через центр описанной окружности, то ACAC является диаметром этой окружности. Это ключевое условие, так как оно накладывает ограничения на треугольник ABC\triangle ABC.

Согласно теореме об угле, опирающемся на диаметр, угол, вписанный в окружность и опирающийся на диаметр, равен 9090^\circ. Следовательно:

B=90.\angle B = 90^\circ.

Теперь применим свойство суммы углов треугольника. В любом треугольнике сумма углов равна 180180^\circ:

A+B+C=180.\angle A + \angle B + \angle C = 180^\circ.

Подставим известные значения:

44+90+C=180.44^\circ + 90^\circ + \angle C = 180^\circ.

Найдем C\angle C:

C=1804490=46.\angle C = 180^\circ - 44^\circ - 90^\circ = 46^\circ.

Ответ:

Угол C=46\angle C = 46^\circ.

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос